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• QCD is the theory of the strong interactions of quarks and 
gluons. Its quantization causes the coupling constant to run with 
the energy and introduces the scale �QCD � 200 MeV
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of the measurements with the others, exclusive averages,
leaving out one of the 8 measurements at a time, are cal-
culated. These are presented in the 5th column of table 1,
together with the corresponding number of standard de-
viations 5 between the exclusive mean and the respective
single measurement.

As can be seen, the values of exclusive means vary only
between a minimum of 0.11818 and a maximum 0.11876.
Note that in the case of these exclusive means and ac-
cording to the ”rules” of calculating their overall errors,
in four out of the eight cases small error scaling factors
of g = 1.06...1.08 had to be applied, while in the other
cases, overall correlation factors of about 0.1, and in one
case of 0.7, had to be applied to assure χ2/ndf = 1. Most
notably, the average value αs(MZ0) changes to αs(MZ0) =
0.1186±0.0011when omitting the result from lattice QCD.

5 Summary and Discussion

In this review, new results and measurements of αs are
summarised, and the world average value of αs(MZ0), as
previously given in [7,28,6], is updated. Based on eight
recent measurements, which partly use new and improved
N3LO, NNLO and lattice QCD predictions, the new av-
erage value is

αs(MZ0) = 0.1184± 0.0007 ,

which corresponds to

Λ(5)

MS
= (213 ± 9 )MeV .

This result is consistent with the one obtained in the pre-
viuos review three years ago [28], which was αs(MZ0) =
0.1189±0.0010. The previous and the actual world average
have been obtained from a non-overlapping set of single
results; their agreement therefore demonstrates a large de-
gree of compatibility between the old and the new, largely
improved set of measurements.

The individual mesurements, as listed in table 1 and
displayed in figure 5, show a very satisfactory agreement
with each other and with the overall average: only one
out of eight measurements exceeds a deviation from the
average by more than one standard deviation, and the
largest deviation between any two out of the eight results,
namely the ones from τ decays and from structure func-
tions, amounts to 2 standard deviations 6.

There remains, however, an apparent and long-standing
systematic difference: results from structure functions pre-
fer smaller values of αs(MZ0) than most of the others, i.e.
those from e+e− annihilations, from τ decays, but also
those from jet production in deep inelastic scattering. This
issue apparently remains to be true, although almost all of
the new results are based on significantly improved QCD

5 The number of standard deviations is defined as the
square-root of the value of χ2.

6 assuming their assigned total errors to be fully uncorre-
lated.

predictions, up to N3LO for structure functions, τ and Z0

hadronic widths, and NNLO for e+e− event shapes.
The reliability of “measurements” of αs based on “ex-

periments” on the lattice have gradually improved over
the years, too. Including vaccum polarisation of three light
quark flavours and extended means to understand and cor-
rect for finite lattice spacing and volume effects, the overall
error of these results significally decreased over time, while
the value of αs(MZ0) gradually approached the world aver-
age. Lattice results today quote the smallest overall error
on αs(MZ0); it is, however, ensuring to see and note that
the world average without lattice results is only marginally
different, while the small size of the total uncertainty on
the world average is, naturally, largely influenced by the
lattice result.
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Fig. 6. Summary of measurements of αs as a function of the
respective energy scale Q. The curves are QCD predictions for
the combined world average value of αs(MZ0), in 4-loop ap-
proximation and using 3-loop threshold matching at the heavy
quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Full sym-
bols are results based on N3LO QCD, open circles are based on
NNLO, open triangles and squares on NLO QCD. The cross-
filled square is based on lattice QCD. The filled triangle at
Q = 20 GeV (from DIS structure functions) is calculated from
the original result which includes data in the energy range from
Q =2 to 170 GeV.

In order to demonstrate the agreement of measure-
ments with the specific energy dependence of αs predicted
by QCD, in figure 6 the recent measurements of αs are
shown as a function of the energy scale Q. For those results
which are based on several αs determinations at different
values of energy scales Q, the individual values of αs(Q)
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leaving out one of the 8 measurements at a time, are cal-
culated. These are presented in the 5th column of table 1,
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5 Summary and Discussion

In this review, new results and measurements of αs are
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This result is consistent with the one obtained in the pre-
viuos review three years ago [28], which was αs(MZ0) =
0.1189±0.0010. The previous and the actual world average
have been obtained from a non-overlapping set of single
results; their agreement therefore demonstrates a large de-
gree of compatibility between the old and the new, largely
improved set of measurements.

The individual mesurements, as listed in table 1 and
displayed in figure 5, show a very satisfactory agreement
with each other and with the overall average: only one
out of eight measurements exceeds a deviation from the
average by more than one standard deviation, and the
largest deviation between any two out of the eight results,
namely the ones from τ decays and from structure func-
tions, amounts to 2 standard deviations 6.

There remains, however, an apparent and long-standing
systematic difference: results from structure functions pre-
fer smaller values of αs(MZ0) than most of the others, i.e.
those from e+e− annihilations, from τ decays, but also
those from jet production in deep inelastic scattering. This
issue apparently remains to be true, although almost all of
the new results are based on significantly improved QCD
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Fig. 6. Summary of measurements of αs as a function of the
respective energy scale Q. The curves are QCD predictions for
the combined world average value of αs(MZ0), in 4-loop ap-
proximation and using 3-loop threshold matching at the heavy
quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Full sym-
bols are results based on N3LO QCD, open circles are based on
NNLO, open triangles and squares on NLO QCD. The cross-
filled square is based on lattice QCD. The filled triangle at
Q = 20 GeV (from DIS structure functions) is calculated from
the original result which includes data in the energy range from
Q =2 to 170 GeV.

In order to demonstrate the agreement of measure-
ments with the specific energy dependence of αs predicted
by QCD, in figure 6 the recent measurements of αs are
shown as a function of the energy scale Q. For those results
which are based on several αs determinations at different
values of energy scales Q, the individual values of αs(Q)
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• QCD is the theory of the strong interactions of quarks and 
gluons. Its quantization causes the coupling constant to run with 
the energy and introduces the scale 

Asymptotic freedom

Confinement

�QCD � 200 MeV
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of the measurements with the others, exclusive averages,
leaving out one of the 8 measurements at a time, are cal-
culated. These are presented in the 5th column of table 1,
together with the corresponding number of standard de-
viations 5 between the exclusive mean and the respective
single measurement.

As can be seen, the values of exclusive means vary only
between a minimum of 0.11818 and a maximum 0.11876.
Note that in the case of these exclusive means and ac-
cording to the ”rules” of calculating their overall errors,
in four out of the eight cases small error scaling factors
of g = 1.06...1.08 had to be applied, while in the other
cases, overall correlation factors of about 0.1, and in one
case of 0.7, had to be applied to assure χ2/ndf = 1. Most
notably, the average value αs(MZ0) changes to αs(MZ0) =
0.1186±0.0011when omitting the result from lattice QCD.

5 Summary and Discussion

In this review, new results and measurements of αs are
summarised, and the world average value of αs(MZ0), as
previously given in [7,28,6], is updated. Based on eight
recent measurements, which partly use new and improved
N3LO, NNLO and lattice QCD predictions, the new av-
erage value is

αs(MZ0) = 0.1184± 0.0007 ,

which corresponds to

Λ(5)

MS
= (213 ± 9 )MeV .

This result is consistent with the one obtained in the pre-
viuos review three years ago [28], which was αs(MZ0) =
0.1189±0.0010. The previous and the actual world average
have been obtained from a non-overlapping set of single
results; their agreement therefore demonstrates a large de-
gree of compatibility between the old and the new, largely
improved set of measurements.

The individual mesurements, as listed in table 1 and
displayed in figure 5, show a very satisfactory agreement
with each other and with the overall average: only one
out of eight measurements exceeds a deviation from the
average by more than one standard deviation, and the
largest deviation between any two out of the eight results,
namely the ones from τ decays and from structure func-
tions, amounts to 2 standard deviations 6.

There remains, however, an apparent and long-standing
systematic difference: results from structure functions pre-
fer smaller values of αs(MZ0) than most of the others, i.e.
those from e+e− annihilations, from τ decays, but also
those from jet production in deep inelastic scattering. This
issue apparently remains to be true, although almost all of
the new results are based on significantly improved QCD

5 The number of standard deviations is defined as the
square-root of the value of χ2.

6 assuming their assigned total errors to be fully uncorre-
lated.

predictions, up to N3LO for structure functions, τ and Z0

hadronic widths, and NNLO for e+e− event shapes.
The reliability of “measurements” of αs based on “ex-

periments” on the lattice have gradually improved over
the years, too. Including vaccum polarisation of three light
quark flavours and extended means to understand and cor-
rect for finite lattice spacing and volume effects, the overall
error of these results significally decreased over time, while
the value of αs(MZ0) gradually approached the world aver-
age. Lattice results today quote the smallest overall error
on αs(MZ0); it is, however, ensuring to see and note that
the world average without lattice results is only marginally
different, while the small size of the total uncertainty on
the world average is, naturally, largely influenced by the
lattice result.
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Fig. 6. Summary of measurements of αs as a function of the
respective energy scale Q. The curves are QCD predictions for
the combined world average value of αs(MZ0), in 4-loop ap-
proximation and using 3-loop threshold matching at the heavy
quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Full sym-
bols are results based on N3LO QCD, open circles are based on
NNLO, open triangles and squares on NLO QCD. The cross-
filled square is based on lattice QCD. The filled triangle at
Q = 20 GeV (from DIS structure functions) is calculated from
the original result which includes data in the energy range from
Q =2 to 170 GeV.

In order to demonstrate the agreement of measure-
ments with the specific energy dependence of αs predicted
by QCD, in figure 6 the recent measurements of αs are
shown as a function of the energy scale Q. For those results
which are based on several αs determinations at different
values of energy scales Q, the individual values of αs(Q)
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The phase diagram of QCD
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Figure 2.1: A sketch of the QCD phase diagram. Figure taken from [96].

tential and T is the temperature1. In the bottom left corner, for low temperatures and
chemical potentials, there is the hadronic matter phase, where quarks and gluons are
confined into hadrons and the approximate chiral symmetry of QCD is spontaneously
broken. These hadrons form a gas which, at su�ciently high chemical potential and low
temperatures undergoes a phase transition to a liquid phase. The critical line and its
endpoint are shown in green in the diagram and are of great interest for nuclear physics,
since they are in the same (T, µB) region of nuclear matter.
Moving further to the right at low temperatures and increasing chemical potentials, one
encounters the quark matter phases, which can be described by a degenerate Fermi liquid
and might be of relevance for the description of the cores of compact/neutron stars. At
asymptotically large chemical potentials there is a growing consensus for the existence of
a Colour SuperConductor (CSC) phase, possibly in its particular Colour-Flavour Locked
(CFL) flavour [97]. We refer to [98] for a review on colour superconductivity. It is also
worth mentioning that, for SU(Nc) gauge theories in the large-Nc limit, the existence
of a confined but chirally symmetric phase, called quarkyonic matter has recently been
proposed [99]. This phase would occur in the region of the phase diagram of the large-Nc

theory corresponding to the quark matter region of the QCD phase diagram.
Our sector of interest is instead the upper-left part of the diagram, which is occupied
by the quark-gluon plasma (QGP) phase. In this phase, whose name is due to Shuryak
[100], quarks and gluons are no longer confined into hadrons, but rather unbound in a
gas of coloured particles and the approximate chiral symmetry is restored. This phase
has been actively searched for in heavy ion collision experiments in the past decades,
from the pioneering experiments at the Alternating Gradient Synchrotron (AGS) at
Brookhaven National Laboratory (BNL) and at the Super Proton Synchrotron (SPS) at
CERN in the 1980s and 1990s, to the ongoing experiments at the Relativistic Heavy Ion

1We adopt a system of units where the Boltzmann constant kB is equal to unity; therefore a temper-
ature of 1 GeV corresponds in SI units to approximately 1.16� 1013 K.

38

Quark-Gluon Plasma:
deconfined, chirally symmetric phase

• In the temperature/baryon chemical potential plane:

Heavy quarkonium in the Quark-Gluon Plasma: the Effective Field Theory approach



The phase diagram of QCD

• In the upper-left region, lattice QCD indicates a (pseudo)critical 
temperature Tc~160 MeV ~2x1012 K 

• For comparison, sun’s core: T~1.5x107 K
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proposed [99]. This phase would occur in the region of the phase diagram of the large-Nc
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[100], quarks and gluons are no longer confined into hadrons, but rather unbound in a
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from the pioneering experiments at the Alternating Gradient Synchrotron (AGS) at
Brookhaven National Laboratory (BNL) and at the Super Proton Synchrotron (SPS) at
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• Past experiments at the CERN SPS, 
currently at the RHIC (BNL) and 
the LHC and future at FAIR (GSI). 
Energies per nucleon pair: 
200 GeV at RHIC, 2.76 TeV at LHC

Heavy ion collision experiments
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• Past experiments at the CERN SPS, 
currently at the RHIC (BNL) and 
the LHC and future at FAIR (GSI). 
Energies per nucleon pair: 
200 GeV at RHIC, 2.76 TeV at LHC

• The highest particle multiplicities are measured in these 
experiments, such as
ALICE PRL105 (2010)

Heavy ion collision experiments

Heavy quarkonium in the Quark-Gluon Plasma: the Effective Field Theory approach

dNch/d⌘ = 1584± 4 (stat.)± 76 (sys.)



• Characterization of the 
medium through two 
classes of observables

• Bulk properties (hydro, 
flow, etc...)

• Hard probes  (jets, e/m 
probes, quarkonia...)

• Hard probes:  high-energy 
particles not in equilibrium 
with the medium. 

• Medium tomography and 
characterization of its 
properties, such as 
deconfinement



• The masses of  the c (~1.5 GeV), b (~4.5 GeV) and t (~175 
GeV) are much larger than !QCD.
They are called heavy quarks, and their quark-antiquark 
bound states          are called quarkonia

• The lower resonances of charmonium and bottomonium 
are to a good deal non-relativistic and perturbative. 

Heavy quarkonia

QQ

Heavy quarkonium in the Quark-Gluon Plasma: the Effective Field Theory approach

6 46. Plots of cross sections and related quantities

σ and R in e+e− Collisions
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Figure 46.6: World data on the total cross section of e+e− → hadrons and the ratio R(s) = σ(e+e− → hadrons, s)/σ(e+e− → µ+µ−, s).
σ(e+e− → hadrons, s) is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, σ(e+e− →
µ+µ−, s) = 4πα2(s)/3s. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one
(green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see “Quantum Chromodynamics” section of
this Review, Eq. (9.7) or, for more details, K. G. Chetyrkin et al., Nucl. Phys. B586, 56 (2000) (Erratum ibid. B634, 413 (2002)). Breit-Wigner
parameterizations of J/ψ, ψ(2S), and Υ(nS), n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of
the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at
http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, May 2010.)



Quarkonium as a hard probe

Heavy quarkonium in the Quark-Gluon Plasma: the Effective Field Theory approach

• Hypothesis: colour screening leads to the 
disappearance of the bound state

• A suppressed J/" yield is observed in the 
dilepton channel
Matsui Satz PLB178 (1986)

Volume 178, number 4 PHYSICS LETTERS B 9 October 1986 

J/c/SUPPRESSION BY QUARK-GLUON PLASMA FORMATION ~ 

T. MATSUI 
Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology, 
Cambridge, MA 02139, USA 

and 

H. SATZ 
Fakultiit J~r Physik, Universitdt Bielefeld, D-4800 Bielefeld, Fed. Rep. Germany 
and Physics Department, Brookhaven National Laboratory, Upton, NY 11973, USA 

Received 17 July 1986 

If high energy heavy ion collisions lead to the formation of a hot quark-gluon plasma, then colour screening prevents ce binding 
in the deconfined interior of  the interaction region. To study this effect, the temperature dependence of  the screening radius, as 
obtained from lattice QCD, is compared with the J/q/radius calculated in charmonium models. The feasibility to detect this effect 
clearly in the dilepton mass spectrum is examined. It is concluded that J/~, suppression in nuclear collisions should provide an 
unambiguous signature ofquark-gluon plasma formation. 

Statistical QCD predicts that strongly interacting 
matter should at sufficiently high density undergo a 
transition from hadronic matter to quark-gluon 
plasma ~ . It is hoped that energetic nuclear colli- 
sions will allow us to study this transition in the lab- 
oratory :2. The experimental detection of plasma 
formation thus becomes crucial: what observable sig- 
natures does the predicted new form of matter 
provide? 

Signatures proposed so far include ~3 real or virtual 
photons, the Pa- distribution of secondary hadrons, 
and the relative production rate of strange particles. 
Non-thermal processes as well as uncertainties in the 
plasma evolution do, however, lead to considerable 
ambiguity for the signals considered up to now. We 
want to present here another type of signature for 
plasma formation, which directly reflects deconfine- 
ment and appears to provide a rather clear and 
model-independent test. 

* This manuscript has been authored under contract number DE- 
AC02-76CH00016 with the US Department of Energy. 

:~ For a recent survey see ref. [ 1 ]. 
:2 Fora recent survey see ref. [2]. 
:3 For surveys see ref. [ 3 ]. 
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The basic mechanism for deconfinement in dense 
matter is the Debye screening of the quark colour 
charge [4]. When the screening radius rD becomes 
less than the binding radius rH of the quark system, 
i.e., less than the hadron radius, the confining force 
can no longer hold the quarks together and hence 
deconfinement sets in. We shall investigate here the 
effect of such a deconfining medium on the binding 
ofc  and e quarks into J/~u mesons. 
The temperature dependence of the colour screening 
radius was recently studied in SU (2) [ 5 ] and SU (3) 
[6] gauge theory. There, one considers the interac- 
tion of a static quark-antiquark system in a purely 
gluonic thermal environment. The absence of 
dynamical quarks does, of course, change the screen- 
ing phenomenon considerably [ 5 ]: since the quarks 
transform according to the fundamental representa- 
tion of the colour gauge group and the gluons accord- 
ing to the adjoint, the quark colour charge cannot be 
screened directly. Nevertheless, the quark interac- 
tion is mediated by gluons, and at high temperature 
the dominant contribution will come from the 
exchange of one gluon, made massive by gluonic col- 
our screening. Moreover, we expect that the intro- 

0370-2693/86/$ 03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 



Quarkonium suppression in experiments

Heavy quarkonium in the Quark-Gluon Plasma: the Effective Field Theory approach

• Typical observable: the nuclear modification factor

• RAA≠1⇒ deviations from binary scaling. Causes:

• Cold Nuclear Matter effects (affect production 
and early stages).

• Hot Medium effects, such as screening. Reduce 
RAA

• Recombination effects. Increase RAA

RAA =
YieldAA

Yieldpp ⇥Nbin
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Charmonium suppression in experiments

Heavy quarkonium in the Quark-Gluon Plasma: the Effective Field Theory approach

• J/! suppression has been measured at SPS, RHIC 
and now LHC. SPS~RHICPb-Pb collisions: RAA vs Npart 

 Comparison with PHENIX 
 
 Stronger centrality dependence at lower energy 
 Systematically larger RAA values for central events in ALICE 

 Behaviour qualitatively expected in a (re)generation scenario 
        Look at theoretical models 
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Figure 5: The nuclear modification factor as function of centrality (left), pT (right) and rapidity
(bottom) for the prompt J/y. The gray boxes plotted at RAA =1 indicate the scale of the global
uncertainties: (left) the uncertainty of 6% on the measured integrated luminosity of the pp data
sample, together with the statistical and systematic uncertainty on the pp data set; (right and
bottom) the pp luminosity and the TAA uncertainties. The bin boundaries are indicated by
small horizontal lines where meaningful.
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Heavy quarkonium in the Quark-Gluon Plasma: the Effective Field Theory approach

• First quality data on the ϒ family from CMS20 6 The pp Reference Sample
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Figure 16: Fit to the pp 2.76 TeV dimuon invariant-mass distribution in the range pT < 20 GeV/c
for |y| < 2.4, showing the � peaks, with the heavy ion algorithm.
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(b) 7 TeV pp data

Figure 17: Invariant mass distributions of 7 TeV and 2.76 TeV data, reconstructed with the pp
algorithms, using tracker muons and applying the acceptance and the muon quality cuts used
for pp analysis.
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• Sequential suppression of ϒ(1S) and ϒ(2S)
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Figure 1: Dimuon invariant-mass distributions in PbPb (left) and pp (right) data at
p

sNN =
2.76 TeV. The same reconstruction algorithm and analysis selection are applied to both datasets,
including a transverse momentum requirement on single muons of pT > 4 GeV/c. The solid
(signal + background) and dashed (background-only) curves show the results of the simulta-
neous fit to the two datasets.

both PbPb and pp datasets via a simultaneous fit.

The background model for the pp dataset consists of a second-order polynomial, as was used
in Ref. [5], while the larger PbPb dataset requires a more detailed background model. The
pT > 4 GeV/c muon selection threshold causes a depletion of dimuon candidates in the lower
part of the 7–14 GeV/c2 mass fitting range. The PbPb background model consists of an exponen-
tial function multiplied by an error function describing the low-mass turn-on. The background
parameters are determined from the fit. This nominal model accurately describes the mass side-
bands in the opposite-sign muon signal sample, shown in Fig. 1 (left), as well as the alternative
estimates of the shape of the combinatorial background obtained from like-sign muon pairs or
via a “track-rotation” method. In the latter method [16] the azimuthal angular coordinate of
one of the muon tracks is rotated by 180 degrees.

The ratios of the observed yields, not corrected for differences in acceptance and efficiency, of
the U(2S) and U(3S) states to the U(1S) state, in the PbPb and pp data, are

U(2S)/U(1S)|pp = 0.56 ± 0.13 (stat.) ± 0.02 (syst.) , (1)
U(2S)/U(1S)|PbPb = 0.12 ± 0.03 (stat.) ± 0.02 (syst.) ,

U(3S)/U(1S)|pp = 0.41 ± 0.11 (stat.) ± 0.04 (syst.) ,
U(3S)/U(1S)|PbPb = 0.02 ± 0.02 (stat.) ± 0.02 (syst.) (< 0.07 at 95% confidence level) ,

where the systematic uncertainty arises from the fitting procedure, as described below. For the
U(3S) to U(1S) ratio in PbPb, a 95% confidence level (CL) limit is set, based on the Feldman–
Cousins statistical method [17].

The measurement of the ratio of the U(nS)/U(1S) ratios in PbPb and pp collisions benefits from
an almost complete cancellation of possible acceptance or efficiency differences among the re-
constructed resonances. The simultaneous fit to the PbPb and pp mass spectra gives the double
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Figure 2: Centrality dependence of the double ratio (left) and of the nuclear modification fac-
tors (right) for the U(1S) and U(2S) states. The relative uncertainties from Npart-independent
quantities (pp yields and, for the RAA, also integrated luminosity) are represented by the boxes
at unity, and are not included in the data points as these uncertainties do not affect the point-
to-point trend. The event centrality bins used are indicated by percentage intervals. The results
are available in tabulated form in App. A.

ratios

U(2S)/U(1S)|PbPb
U(2S)/U(1S)|pp

= 0.21 ± 0.07 (stat.)± 0.02 (syst.) , (2)

U(3S)/U(1S)|PbPb
U(3S)/U(1S)|pp

= 0.06 ± 0.06 (stat.)± 0.06 (syst.) (< 0.17 at 95% CL) .

The systematic uncertainties from the fitting procedure are evaluated by varying the fit func-
tion as follows: fixing the CB tail and resolution parameters to MC expectations, allowing
for differences in these parameters between PbPb and pp, and constraining the background
parameters with the like-sign and track-rotated spectra. An additional systematic uncertainty
(1%), estimated from MC simulation, is included to account for possible imperfect cancellations
of acceptance and efficiency.

The double ratios, defined in Eq. (2), are expected to be compatible with unity in the absence of
suppression of the excited states relative to the U(1S) state. The measured values are, instead,
considerably smaller than unity. The significance of the observed suppression exceeds 5 s.

In order to investigate the dependence of the suppression on the centrality of the collision,
the double ratio U(2S)/U(1S)|PbPb

U(2S)/U(1S)|pp
is displayed as a function of Npart in Fig. 2 (left). The results

are constructed from the single ratio U(2S)/U(1S)|PbPb measured in bins of PbPb centrality,
using the pp ratio as normalization. No pronounced centrality dependence is observed. More
data, in particular more pp collisions, are needed to establish possible dependences on dimuon
kinematic variables.

Absolute suppressions of the individual U states and their dependence on the collision central-
ity are studied using the nuclear modification factor, RAA, defined as the yield per nucleon-
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Overview of dissociation

Heavy quarkonium in the Quark-Gluon Plasma: the Effective Field Theory approach

• Matsui/Satz: dissociation induced by colour 
screening of the interaction

V (r) ⇥ ��s
e�mDr

r

• Since then, dissociation has been studied with 
potential models, lattice spectral functions, 
AdS/CFT and now with EFTs

r � 1
mD

Bound state
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Potential models

Heavy quarkonium in the Quark-Gluon Plasma: the Effective Field Theory approach

Static quark anti-quark free and internal energy in 2-flavor QCD Olaf Kaczmarek
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Figure 1: (left) The colour singlet quark anti-quark free energies, F1(r,T ), at several temperatures as func-
tion of distance in physical units. Shown are results from lattice studies of 2-flavour QCD (from [1]). The

solid line represents the T = 0 heavy quark potential,V (r). The dashed error band corresponds to the string
breaking energy at zero temperature, V (rbreaking) ! 1000− 1200 MeV, based on the estimate of the string

breaking distance, rbreaking ! 1.2−1.4 fm [2]. (right) The screening radius estimated from the inverse Debye
mass, rD ≡ 1/mD (Nf=0: open squares, Nf=2 filled squares), and the scale rmed (Nf=0: open circles, Nf=2:

filled circles, Nf=3: crosses) defined in (2.1) as function of T/Tc. The horizontal lines give the mean squared
charge radii of some charmonium states, J/! , "c and ! ′ (see also [3, 4]) and the band at the left frame shows
the distance at which string breaking is expected in 2-flavor QCD at T = 0 and quark mass m#/m$ ! 0.7
[2].

1. Introduction

A simple Ansatz to study the possible existence of bound states above the critical temperature

is to use effective temperature dependent potentials that model the medium modifications of strong

interactions in a quark gluon plasma. To what extend a suitable effective potential at finite tem-

perature can be defined by quark antiquark free or internal energies and furthermore how realistic

such (simple) descriptions of bound states in a deconfined medium are is still an open question.

By comparing the screening radii obtained from lattice results on singlet free energies in 2-flavour

QCD to the mean squared charge radii we obtain first estimates on the temperatures where char-

monium bound states may be influenced by medium effects. In more realistic potential model

calculations effective temperature dependent potentials that model medium effects are used in the

Schrödinger equation. We present the heavy quark free energies and their contributions, i.e. en-

tropy and internal energy, and discuss the different results obtained using those contributions in

potential models.

2. Screening radii and medium modifications

In Fig. 1 (left) we show results for the heavy quark anti-quark free energies in 2-flavour QCD

[1]. While in the limit of short distances F1(r,T ) shows no or only little medium effects, i.e. F1(r→

0) ! V (r), at large distances the free energies approach temperature dependent constant values,

F%(T ) ≡ F1(r→ %,T ). To characterise distances at which medium effects become important we

introduce a screening radius, rmed , defined by the distance at which the value of the zero temperature
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• Assume Schrödinger equation, all 
medium effects in a T-dependent 
potential

• Assume

 
potential corresponding to a free 
energy or

internal energy measured on the 
lattice
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• Issues:

• No clear relation to QCD and 
ab-initio derivation of the 
potential

• Gauge-dependent correlators
• Are all effects incorporated?

• Qualitative agreement on a 
picture of sequential 
dissociation T/TC 1/〈r〉

ϒ(1S)

J/ψ(1S)

χc(1P)≤ 1

2
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Effective Field Theories

Heavy quarkonium in the Quark-Gluon Plasma: the Effective Field Theory approach

• An EFT is constructed by integrating out modes 
of energy and momentum larger than the cut-
off ($≪!)

• The Wilson coefficient are obtained by matching Green’s 
functions in the two theories

• The procedure can be iterated 
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At zero temperature

Heavy quarkonium in the Quark-Gluon Plasma: the Effective Field Theory approach

• Non-relativistic        bound states are 
characterized by the hierarchy of 
the mass, momentum transfer 
and kinetic/binding energy scales

• Expand observables in terms of 
the ratio of the scales, v 

• Construct a hierarchy of EFTs. 
Equivalent to QCD order-by-order 
in the expansion parameter
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Integrating out the mass scale:
Non-Relativistic QCD (NRQCD)

m

mv ⇠
⌧
1

r

�

mv2 ⇠ E

• The mass is integrated out and the theory 
becomes non-relativistic

• Factorization between contributions from 
the scale m and from lower-energies

• Ideal for production and decay studies

Caswell Lepage PLB167 (1986)
Bodwin Braaten Lepage PRD51 (1995)
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• At weak coupling,         DOFs are cast into  
colour-singlet and octet
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• Main goal: extend the well-established T=0 NR EFT 
framework to finite temperatures to address systematically 
heavy quarkonia in the medium

• Modern and rigorous definition of the potential and 
derivation from QCD at finite temperature, systematically 
taking into account the imaginary parts that lead to the 
thermal width

• Calculations of in-medium spectra and widths

• Clarification of the relation between the thermodynamical 
free energies and the EFT potentials

Goals of the thesis

Heavy quarkonium in the Quark-Gluon Plasma: the Effective Field Theory approach
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The thermodynamical scales
• The thermal medium introduces new 

scales in the physical problem

• The temperature

• The electric screening scale (Debye mass)

• The magnetic screening scale (magnetic 
mass)

• In the weak coupling assumption these 
scales develop a hierarchy

T

gT � mD

g2T � mm



Finite-temperature NR EFT how-to

?
T ⇥ mD � gT ⇥ mm � g2T

m � mv ⇠ m↵s ⇠ h1/ri � mv2 ⇠ m↵2
s ⇠ E

• Assume a global hierarchy between the bound-state and 
thermodynamical scales

• Many different possibilities have been considered in the relevant 
macroregions                   ,                 and                   (with               ) 

• Proceed from the top to systematically integrate out each scale, 
creating a tower of EFTs. Make use of existing EFTs (T=0 NR EFTs, 
finite T EFTs such as HTL)

• Once the scale mv has been integrated out the colour singlet and 
octet potentials appear

T � mvT ⌧ mv T ⇠ mv T ⌧ m



The screening region:assdda       
• For T>>1/r~mD we provide an EFT derivation and rigorous 

definition of the potential first obtained by Laine et al.

Laine Philipsen Romatschke Tassler JHEP0703 (2007)
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The screening region:assdda       
• For T>>1/r~mD we provide an EFT derivation and rigorous 

definition of the potential first obtained by Laine et al.

Laine Philipsen Romatschke Tassler JHEP0703 (2007)

• Re V ⇒ screening. Im V ⇒ width induced by collisions with 
the medium. Im V >> Re V for               

Landau Damping
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Figure 2. Left: cut in the diagram yielding the leading piece of QQ potential corresponding to
the quasi-free process. The dashed line is the cut, thick lines with arrows are the heavy quark and
antiquark, curly lines are gluons and the particles in the loop are either light quarks or gluons.
Right: cut in the leading-order QQ colour-singlet self-energy that corresponds to the process of
quasi-free dissociation. The single line is the singlet propagator, the double line is the octet, the
vertex is a chromoelectric dipole vertex and the other lines are as in the previous diagram.

which is a good approximation as long as T � E, since the incoming parton is on shell

(hence q0in = q) and its momentum is of the order of the temperature, while the transferred

energy is of the order of the binding energy and thus q0out ⇡ q.

At this point one may wonder whether the EFTs result are consistent with this picture.

In the EFT approach one does not compute directly the cross section but rather the

imaginary part of the heavy-quark potential (for the contribution of all scales larger than

E) or of the bound state self-energy (for E and lower-lying scales). The contribution

to quasi-free dissociation will then come from diagrams such as those shown in Fig. 2.

Although in EFTs our degrees of freedom include the QQ pair as well, either as two

separate non-relativistic fields or as a QQ colour-singlet or colour-octet field, it will be

su�cient, in order to check that we have the expected structure, i.e. Eq. (2.2), to study

the imaginary part of the gluon propagator . The reason is that all the information about

the interaction with partons in the medium is encoded here.

We are going to use the real-time formalism of Thermal Field Theory [36]. In this

formalism a doubling of degrees of freedom has to be taken into account: external particles

are of type “1”, i.e. they live on the time-ordered branch of the Schwinger-Keldysh contour,

whereas in the loops one has to consider also particles of type “2”, i.e. those located on

the anti-time-ordered branch. However, as shown in detail in [9, 37], heavy quarks are not

thermalized, up to exponentially suppressed contributions and all vertices involving heavy

quarks are of type “1”. So we have to study the imaginary part of the “11” component

of the gluon propagator. By using the so-called Keldysh, or ra, representation, this can

be written in terms of the advanced (A), retarded (R) and symmetric (S) propagator. In

general the 11 component can be written as

�11(k0, k) =
1

2
(�R(k0, k) +�A(k0, k) +�S(k0, k)) , (2.3)

where throughout the paper italic letters refer to the modulus of the spatial momentum,

i.e. k = |k|.
Since (�R)⇤ = �A, the contribution to the cut of the propagator is in �S , which is in turn
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The perturbation region:asdasdmv � T

• When mv>>T>>mv2 the thermal medium acts as a 
perturbation to the potential. 
Relevant for the ground states of bottomonium: 
mv ~ 1.5 GeV, T < 1 GeV

• The EFT obtained by integrating out the 
temperature from pNRQCD is called pNRQCDHTL
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The perturbation region:asdasd
• Within this theory we computed the spectrum and the 

thermal width of the ϒ(1S) to order           in the power 
counting of the EFT

• We must evaluate loop diagrams in the EFTs

mv � T

where ∆V =
1

r

(

αVo

2Nc
+ CF αVs

)

≈
Ncαs

2r
. The corresponding Feynman diagram is shown

in Fig. 5. Integrals over momenta have been regularized in dimensional regularization (d is

the number of dimensions, µ is the compensating scale). In Eq. (64), i/(−k0 − ∆V + iε)

is the “11” component of the static octet propagator; Eq. (66) vanishes because the “12”

component of the static octet propagator vanishes and in Eq. (67), 2πδ(−k0 − ∆V ) is the

“21” component of the static octet propagator. Note that vertices of type “1” and “2”

have opposite signs. Equation (65), which may also be read [−iδVs(r)]22 = [−iδVs(r)]
∗
11,

reflects the relation existing between the “11” and “22” components of the propagators in

the real-time formalism.

FIG. 5: The single continuous line stands for a singlet propagator, the double line for an octet

propagator, the circle with a cross for a chromoelectric dipole vertex and the curly line connecting

the two circles with a cross for a chromoelectric correlator.

We are interested in calculating the contribution to the integrals in Eqs. (64)-(67) from

momenta k ∼ T . Since T $ ∆V , we may expand in ∆V/T . Moreover, at leading order,

the propagators in Eqs. (64) and (67) are the free ones, D(0)
00 and D(0)

ii , given in Eqs. (36)

and (37). However the leading-order thermal contribution, which would be of order g2 r2 T 3,

vanishes:

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d

i

−k0 + iε
(k0)2 4πδ(k2) nB(|k0|) = 0 , (68)

[δVs(r)]21 = ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
2πδ(−k0) (k0)2 4πδ(k2) nB(|k0|) = 0 . (69)

Several next-to-leading order corrections are possible, because several scales are still dy-

namical in the EFT: we may have corrections of relative order ∆V/T , mD/T , (rT ), αs and

so on.

(1) First, we consider corrections of order ∆V/k0 or higher to the quark-antiquark prop-

agator, which contribute to order g2 r2 T 3 × ∆V/T or higher to δVs(r):

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d

i

−k0 − ∆V + iε

[

(k0)2 D(0)
ii (k) + %k2 D(0)

00 (k)
]

11

18

diagram shown in Fig. 8; hence, at next-to-leading order we can write

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
πδ(−k0)#k2 [δD00(k)]11 , (77)

[δVs(r)]21 = ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
2πδ(−k0)#k2 [δD00(k)]21 , (78)

where

[δD00(k)]11 =
δDR

00(k) + δDA
00(k)

2
+

(

1

2
+ nB(k0)

)

(

δDR
00(k) − δDA

00(k)
)

, (79)

[δD00(k)]21 = (1 + nB(k0))
(

δDR
00(k) − δDA

00(k)
)

, (80)

δDR,A
00 (k) = −

i
#k4

ΠR,A
00 (k) , (81)

and, the relevant limit for the gluon polarization ΠR,A
00 (k) in Coulomb gauge is given by

Eqs. (44) and (45). Finally, the correction to the real-time potential reads

δVs(r) =

[

−
3

2
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αs

π
r2 T m2

D +
2

3
ζ(3) NcCF α2

s r2 T 3

]
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where ε = (4−d)/2, γE is the Euler gamma and ζ the Riemann zeta function (ζ(2) = π2/6).

Note that in Eq. (82), besides terms that are proportional to the Debye mass there are finite

terms, both in the real and in the imaginary part, that do not depend on it.

FIG. 8: The symbols are like in Fig. 5. The dashed blob stands for a one-loop self-energy insertion

in the gluon propagator.

Equation (82) contains an imaginary contribution. The origin of this contribution is

different from the one in Eq. (73). The one here comes from the imaginary part in the

gluon self energy, which is due to to the scattering of particles with momenta of order T in

the thermal bath with space-like gluons, (k0)2 < |#k|2, (Landau damping) while the one in
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• As an example, the 1S width reads
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• The leading contribution is linear in the temperature
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• The leading contribution is linear in the temperature
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• As an example, the 1S width reads
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• The leading contribution is linear in the temperature
• Two mechanisms: singlet-to-octet thermal breakup and 
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where ∆V =
1

r

(

αVo

2Nc
+ CF αVs

)

≈
Ncαs

2r
. The corresponding Feynman diagram is shown

in Fig. 5. Integrals over momenta have been regularized in dimensional regularization (d is

the number of dimensions, µ is the compensating scale). In Eq. (64), i/(−k0 − ∆V + iε)

is the “11” component of the static octet propagator; Eq. (66) vanishes because the “12”

component of the static octet propagator vanishes and in Eq. (67), 2πδ(−k0 − ∆V ) is the

“21” component of the static octet propagator. Note that vertices of type “1” and “2”

have opposite signs. Equation (65), which may also be read [−iδVs(r)]22 = [−iδVs(r)]
∗
11,

reflects the relation existing between the “11” and “22” components of the propagators in

the real-time formalism.

FIG. 5: The single continuous line stands for a singlet propagator, the double line for an octet

propagator, the circle with a cross for a chromoelectric dipole vertex and the curly line connecting

the two circles with a cross for a chromoelectric correlator.

We are interested in calculating the contribution to the integrals in Eqs. (64)-(67) from

momenta k ∼ T . Since T $ ∆V , we may expand in ∆V/T . Moreover, at leading order,

the propagators in Eqs. (64) and (67) are the free ones, D(0)
00 and D(0)

ii , given in Eqs. (36)

and (37). However the leading-order thermal contribution, which would be of order g2 r2 T 3,

vanishes:

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d

i

−k0 + iε
(k0)2 4πδ(k2) nB(|k0|) = 0 , (68)

[δVs(r)]21 = ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
2πδ(−k0) (k0)2 4πδ(k2) nB(|k0|) = 0 . (69)

Several next-to-leading order corrections are possible, because several scales are still dy-

namical in the EFT: we may have corrections of relative order ∆V/T , mD/T , (rT ), αs and

so on.

(1) First, we consider corrections of order ∆V/k0 or higher to the quark-antiquark prop-

agator, which contribute to order g2 r2 T 3 × ∆V/T or higher to δVs(r):

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
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−k0 − ∆V + iε

[
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00 (k)
]

11

18

diagram shown in Fig. 8; hence, at next-to-leading order we can write

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
πδ(−k0)#k2 [δD00(k)]11 , (77)

[δVs(r)]21 = ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
2πδ(−k0)#k2 [δD00(k)]21 , (78)

where
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δDR
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δDR
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)

, (80)

δDR,A
00 (k) = −

i
#k4

ΠR,A
00 (k) , (81)

and, the relevant limit for the gluon polarization ΠR,A
00 (k) in Coulomb gauge is given by

Eqs. (44) and (45). Finally, the correction to the real-time potential reads
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where ε = (4−d)/2, γE is the Euler gamma and ζ the Riemann zeta function (ζ(2) = π2/6).

Note that in Eq. (82), besides terms that are proportional to the Debye mass there are finite

terms, both in the real and in the imaginary part, that do not depend on it.

FIG. 8: The symbols are like in Fig. 5. The dashed blob stands for a one-loop self-energy insertion

in the gluon propagator.

Equation (82) contains an imaginary contribution. The origin of this contribution is

different from the one in Eq. (73). The one here comes from the imaginary part in the

gluon self energy, which is due to to the scattering of particles with momenta of order T in

the thermal bath with space-like gluons, (k0)2 < |#k|2, (Landau damping) while the one in

21

Singlet-to-octet Landau Damping

E1 = �4

9
m↵2

s , a0 =
3

2m↵s



�1S =

1156

81

↵3
sT +

7225

162

E1↵
3
s

�4

3

a20↵sTm
2
D

✓
ln

E2
1

T 2
+ 2�E � 3� log 4� 2

⇣ 0(2)

⇣(2)
� 8

3

I1S

◆

�32⇡

3

ln 2 a20↵
2
sT

3

The perturbation region:asdasd
• As an example, the 1S width reads

mv � T

• The leading contribution is linear in the temperature
• Two mechanisms: singlet-to-octet thermal breakup and 

Landau damping 

where ∆V =
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αVo

2Nc
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)

≈
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. The corresponding Feynman diagram is shown

in Fig. 5. Integrals over momenta have been regularized in dimensional regularization (d is

the number of dimensions, µ is the compensating scale). In Eq. (64), i/(−k0 − ∆V + iε)

is the “11” component of the static octet propagator; Eq. (66) vanishes because the “12”

component of the static octet propagator vanishes and in Eq. (67), 2πδ(−k0 − ∆V ) is the

“21” component of the static octet propagator. Note that vertices of type “1” and “2”

have opposite signs. Equation (65), which may also be read [−iδVs(r)]22 = [−iδVs(r)]
∗
11,

reflects the relation existing between the “11” and “22” components of the propagators in

the real-time formalism.
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We are interested in calculating the contribution to the integrals in Eqs. (64)-(67) from

momenta k ∼ T . Since T $ ∆V , we may expand in ∆V/T . Moreover, at leading order,

the propagators in Eqs. (64) and (67) are the free ones, D(0)
00 and D(0)

ii , given in Eqs. (36)

and (37). However the leading-order thermal contribution, which would be of order g2 r2 T 3,

vanishes:

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d

i

−k0 + iε
(k0)2 4πδ(k2) nB(|k0|) = 0 , (68)
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r2

d − 1
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∫

ddk

(2π)d
2πδ(−k0) (k0)2 4πδ(k2) nB(|k0|) = 0 . (69)

Several next-to-leading order corrections are possible, because several scales are still dy-

namical in the EFT: we may have corrections of relative order ∆V/T , mD/T , (rT ), αs and

so on.

(1) First, we consider corrections of order ∆V/k0 or higher to the quark-antiquark prop-

agator, which contribute to order g2 r2 T 3 × ∆V/T or higher to δVs(r):

[δVs(r)]11 = −ig2 CF
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d − 1
µ4−d

∫
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diagram shown in Fig. 8; hence, at next-to-leading order we can write

[δVs(r)]11 = −ig2 CF
r2

d − 1
µ4−d

∫

ddk

(2π)d
πδ(−k0)#k2 [δD00(k)]11 , (77)
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d − 1
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∫
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where
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2
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)

, (80)

δDR,A
00 (k) = −
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ΠR,A
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and, the relevant limit for the gluon polarization ΠR,A
00 (k) in Coulomb gauge is given by

Eqs. (44) and (45). Finally, the correction to the real-time potential reads
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where ε = (4−d)/2, γE is the Euler gamma and ζ the Riemann zeta function (ζ(2) = π2/6).

Note that in Eq. (82), besides terms that are proportional to the Debye mass there are finite

terms, both in the real and in the imaginary part, that do not depend on it.
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different from the one in Eq. (73). The one here comes from the imaginary part in the

gluon self energy, which is due to to the scattering of particles with momenta of order T in
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Potentials and free energies
• The Polyakov loop (PL) and the Polyakov-loop correlator (PLC) 

are related to the thermodynamical free energies of a static 
quark and of a static        pair.

• We have computed both in perturbation theory. For the PL we 
correct the long-standing result, for the PLC our results, 
obtained for short distances, are new
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Potentials and free energies
• We have shown that, with pNRQCD in imaginary time, the 

correlator can be decomposed  at short distances into gauge-
invariant colour-singlet and octet free energies

• These free energies are quantitatively different from the real-
time potentials

• Intuitively

Brambilla JG Petreczky Vairo PRD82 (2010)

Im(F ) = 0, Im(V ) 6= 0 Re(F ) 6= Re(V )

t ! 1 6= it =
1

T



Conclusions
• Construction of an EFT framework for heavy quarkonia at finite 

temperature. Within this framework we can

• Systematically take into account corrections and include all 
medium effects

• Give a rigorous QCD derivations of the potential, bridging 
the gap with potentials models which appear as leading-
order picture here

• Compute potentials, spectra and widths in different regimes, 
with particular relevance for the new frontier of ϒ(1S) 
phenomenology

• Study the relation between potentials and free energies



Outlook
• Take our EFT framework to the strong-coupling 

region, again following the path of the T=0 EFT. 
Lattice progress is needed, work in progress

• Phenomenological application to the ϒ(1S)

• Relation between our EFT widths and the 
previous approaches: 
Brambilla Escobedo JG Vairo JHEP1112 (2011), in prep. (2013)

• Application of the methodology to other 
problems, such as heavy quark energy loss
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