Transport properties of the QCD medium

Quark Matter 2022, Kraków, April 82022

In this talk

- Recent developments in the microscopic description of kinetic and transport properties of the quark gluon plasma
- Medium-induced radiation
- Transverse momentum broadening
- The effective kinetic theory, transport\&thermalisation
- Main driver: better understanding\&control of theory and its uncertainties
- Many interesting developments and results, limited sample presented here. I refer to the original contributions

Medium-induced radiation

Medium-induced radiation

- Key ingredient
- in the description of jet modification, see J. Brewer's talk
- in thermalisation\&transport: effective number-violating $1 \leftrightarrow 2$ process, efficient chemical equilibration and energy transport, bottom-up thermalisation Baier Mueller Schiff Son (2001)

Medium-induced radiation

- Probability I: vacuum DGLAP x emission vertices x transverse diffusion

$$
\frac{d I}{d x}=\frac{\alpha_{s} P_{1 \rightarrow 2}(x)}{[x(1-x) E]^{2}} \operatorname{Re} \int_{t_{1}<t_{2}} d t_{1} d t_{2} \nabla_{b_{2}} \cdot \nabla_{b_{1}}\left[\left.\left\langle\boldsymbol{b}_{2}, t_{2} \mid \boldsymbol{b}_{1}, t_{1}\right\rangle\right|_{b_{2}=b_{1}=0}-\mathrm{vac} .\right]
$$

Medium-induced radiation

- Probability I: vacuum DGLAP x emission vertices x transverse diffusion

$$
\frac{d I}{d x}=\frac{\alpha_{s} P_{1 \rightarrow 2}(x)}{[x(1-x) E]^{2}} \operatorname{Re} \int_{t_{1}<t_{2}} d t_{1} d t_{2} \nabla_{b_{2}} \cdot \nabla_{b_{1}}\left[\left.\left\langle\boldsymbol{b}_{2}, t_{2} \mid \boldsymbol{b}_{1}, t_{1}\right\rangle\right|_{b_{2}=b_{1}=0}-\text { vac. }\right]
$$

- Transverse diffusion under this Hamiltonian

$$
\mathcal{H}=-\frac{\nabla_{b}^{2}}{2 x(1-x) E}+\sum_{i} \frac{m^{2}}{2 E_{i}}-i \mathcal{C}(\boldsymbol{b}, x \boldsymbol{b},(1-x) \boldsymbol{b})
$$

Real part: phase accumulation (with in-medium masses)
Imaginary part: Wilson lines encoding scattering kernel with the medium

Medium-induced radiation

- In practice, most approaches resorted to limiting regimes
- Opacity expansion, for thin media Gyulassy Levai Vitev (2000)

$$
N=1 \quad \begin{gathered}
\text { 为 } \\
\times
\end{gathered}
$$

- Harmonic oscillator approximation, for thick media, introduce \hat{q} Diffusion under multiple soft scatterings

$$
\mathcal{C}(\boldsymbol{b}, x \boldsymbol{b},(1-x) \boldsymbol{b}) \approx \frac{\hat{q}}{4}\left[b^{2}+(x b)^{2}+((1-x) b)^{2}\right]
$$

- Infinite, time-independent medium Arnold Moore Yaffe (2002)

Medium-induced radiation: new developments

- Consider for simplicity the broadening of a single parton: $\mathcal{C}(b, b)$
- Broadening probability

$$
\mathcal{P}\left(k_{\perp}\right)=\int_{\boldsymbol{b}} e^{-i \boldsymbol{k}_{\perp} \cdot \boldsymbol{b}} \exp [-\mathcal{C}(\boldsymbol{b}) L]
$$

Medium-induced radiation: new developments

- Consider for simplicity the broadening of a single parton: $\mathcal{C}(b, b)$
- Broadening probability

$$
\mathcal{P}\left(k_{\perp}\right)=\int_{\boldsymbol{b}} e^{-i \boldsymbol{k}_{\perp} \cdot \boldsymbol{b}} \exp [-\mathcal{C}(\boldsymbol{b}) L]
$$

Barata Mehtar-Tani Soto-Ontoso Tywoniuk PRD104 (2021)
Posters by Barata, Takacs, Tywoniuk Wednesday

Medium-induced radiation: new developments

- Consider for simplicity the broadening of a single parton:
$\mathcal{C}\left(\boldsymbol{b}, \ldots,{ }^{2}\right) \approx \frac{\hat{q}}{4}\left[b^{2}\right] \equiv \mathcal{C}_{\mathrm{HO}}$
- Broadening probability

$$
\mathcal{P}\left(k_{\perp}\right)=\int_{\boldsymbol{b}} e^{-i \boldsymbol{k}_{\perp} \cdot \boldsymbol{b}} \exp [-\mathcal{C}(\boldsymbol{b}) L]
$$

- IR Gaussian from multiple soft scatterings

$$
\mathcal{P}\left(k_{\perp}\right)_{\text {HO }} \propto \exp \left(-\frac{k_{\perp}^{2}}{\hat{q} L}\right)
$$

Barata Mehtar-Tani Soto-Ontoso Tywoniuk PRD104 (2021)
Posters by Barata, Takacs, Tywoniuk Wednesday

Medium-induced radiation: new developments

- Consider for simplicity the broadening of a single parton:
$\mathcal{C}\left(\boldsymbol{b}, \ldots,{ }^{2}\right) \approx \frac{\hat{q}}{4}\left[b^{2}\right] \equiv \mathcal{C}_{\mathrm{HO}}$
- Broadening probability

$$
\mathcal{P}\left(k_{\perp}\right)=\int_{\boldsymbol{b}} e^{-i \boldsymbol{k}_{\perp} \cdot \boldsymbol{b}} \exp [-\mathcal{C}(\boldsymbol{b}) L]
$$

- IR Gaussian from multiple soft scatterings

$$
\mathcal{P}\left(k_{\perp}\right)_{\text {но }} \propto \exp \left(-\frac{k_{\perp}^{2}}{\hat{q} L}\right)
$$

- asymptotic freedom \Rightarrow it has to make way to the rare large momentum scatterings

$$
\mathcal{P}\left(k_{\perp}\right)_{\text {Coulomb }} \propto \frac{\alpha_{s}^{2} T^{3} L}{k_{\perp}^{4}}
$$

Barata Mehtar-Tani Soto-Ontoso Tywoniuk PRD104 (2021)
Posters by Barata, Takacs, Tywoniuk Wednesday

Medium-induced radiation: new developments

- Improved harmonic oscillator approximation (IHO or IOE):

$$
\mathcal{C}(\boldsymbol{b}, x \boldsymbol{b},(1-x) \boldsymbol{b}) \approx \frac{\hat{q}}{4}\left[b^{2}+(x b)^{2}+((1-x) b)^{2}\right] \equiv \mathcal{C}_{\mathrm{HO}} \quad \mathcal{C}=\underbrace{\mathcal{C}_{\mathrm{HO}}}_{\alpha b^{2}}+[\underbrace{\mathcal{C}-\mathcal{C}_{\mathrm{HO}}}_{\alpha b^{2} \ln (b), \ldots}]
$$

Treat the non-quadratic part of the kernel as a perturbation, properly incorporating the Coulomb logarithm: includes the rarer harder "Molière" scatterings

- Inclusion of Molière scattering in hybrid framework: talk by Hulcher Tue 18:30

Medium-induced radiation: new developments

- Numerical determination of the Green's function of the full Hamiltonian

Andres Apolinario Dominguez JHEP2007 (2020) Andres Dominguez Gonzalez-Martinez JHEP2103 (2021)
Applications to time-dependent media in the talk by Andres, Wed 16:40

Medium-induced radiation: the scattering kernel

Medium-induced radiation: the scattering kernel

- Classical (soft gluon) corrections to the scattering/broadening kernel can be problematic for perturbation theory, Linde problem

Medium-induced radiation: the scattering kernel

- Classical (soft gluon) corrections to the scattering/broadening kernel can be problematic for perturbation theory, Linde problem
- Breakthrough: soft classical modes at space-like separations become
 Euclidean and time-independent Caron-Huot PRD79 (2008)

Medium-induced radiation: the scattering kernel

- Classical (soft gluon) corrections to the scattering/broadening kernel can be problematic for perturbation theory, Linde problem
- Breakthrough: soft classical modes at space-like separations become
 Euclidean and time-independent Caron-Huot PRD79 (2008)
- Horrible HTL perturbative calculation or extremely challenging 4D lattice on the light-cone become 3D Electrostatic QCD (EQCD). New strategy: lattice for $b \approx 1 / g T$, pQCD for $b \leqslant 1 / g T$

Medium-induced radiation: the scattering kernel

- Classical (soft gluon) corrections to the scattering/broadening kernel can be problematic for perturbation theory, Linde problem
- Breakthrough: soft classical modes at space-like separations become
 Euclidean and time-independent Caron-Huot PRD79 (2008)
- Horrible HTL perturbative calculation or extremely challenging 4D lattice on the light-cone become 3D Electrostatic QCD (EQCD). New strategy: lattice for $b \approx 1 / g T$, pQCD for $b \leqslant 1 / g T$
- Recently: continuum-extrapolated EQCD lattice data for the scattering kernel and merging with pQCD Moore Schlusser PRD101 (2020) Moore Schlichting Schlusser Soudi JHEP2110 (2021)

The scattering kernel

Schlichting Soudi 2111.13731, talk by Soudi Thu 12:50

Medium-induced radiation from the EQCD kernel

- (Numerical) splitting rate with the non-perturbative broadening kernel

- Differences from the broadening kernel more important than differences from the more sophisticated approximations to the LPM equation Schlichting Soudi 2111.13731, talk by Soudi Thu 12:50

The scattering kernel

Schlichting Soudi 2111.13731, talk by Soudi Thu 12:50

The scattering kernel: quantum corrections

- Radiative corrections to momentum broadening are enhanced by soft and collinear logarithms in the single scattering regime \Rightarrow double logarithm

$$
\delta \hat{q}=\frac{\alpha_{s} N_{c}}{\pi} \hat{q}_{0} \int_{\text {single }} \frac{d \omega}{\omega} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}=\frac{\alpha_{s} N_{c}}{\pi} \hat{q}_{0} \ln ^{2}\left(\frac{L}{\tau_{0}}\right)
$$

Liou Mueller Wu (2013) Blaizot Dominguez Iancu Mehtar-Tani (2013)

Caucal Mehtar-Tani 2109.120412203 .09407
Poster by Mehtar-Tani later today

The scattering kernel: quantum corrections

- Radiative corrections to momentum broadening are enhanced by soft and collinear logarithms in the single scattering regime \Rightarrow double logarithm

$$
\delta \hat{q}=\frac{\alpha_{s} N_{c}}{\pi} \hat{q}_{0} \int_{\text {single }} \frac{d \omega}{} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}=\frac{\alpha_{s} N_{c}}{\pi} \hat{q}_{0} \ln ^{2}\left(\frac{L}{\tau_{0}}\right)
$$

Liou Mueller Wu (2013) Blaizot Dominguez Iancu Mehtar-Tani (2013)

- This $\log ^{2}$ renormalises the LO qhat. Resum these logs
- Single hard scattering $k_{\perp}^{\prime 2} \gg \hat{q} \tau$
- UV cutoff
- Shortest duration τ_{0}
by solving the above numerically and semi-analytically
Caucal Mehtar-Tani 2109.120412203 .09407
Poster by Mehtar-Tani later today

The scattering kernel: quantum corrections

- Radiative corrections to momentum broadening are enhanced by soft and collinear logarithms in the single scattering regime \Rightarrow double logarithm

$$
\delta \hat{q}=\frac{\alpha_{s} N_{c}}{\pi} \hat{q}_{0} \int_{\text {single }} \frac{d \omega}{\omega} \frac{d k_{\perp}^{2}}{k_{\perp}^{2}}=\frac{\alpha_{s} N_{c}}{\pi} \hat{q}_{0} \ln ^{2}\left(\frac{L}{\tau_{0}}\right)
$$

Liou Mueller Wu (2013) Blaizot Dominguez Iancu Mehtar-Tani (2013)

- This $\log ^{2}$ renormalises the LO qhat. Resum these logs

$$
\begin{aligned}
\hat{q}\left(\tau, \boldsymbol{k}_{\perp}^{2}\right) & =\hat{q}^{(0)}\left(\tau_{0}, \boldsymbol{k}_{\perp}^{2}\right)+\int_{\tau_{0}}^{\tau} \frac{\mathrm{d} \tau^{\prime}}{\tau^{\prime}} \int_{Q_{s}^{2}\left(\tau^{\prime}\right)}^{\boldsymbol{k}_{\perp}^{2}} \frac{\mathrm{~d} \boldsymbol{k}_{\perp}^{\prime 2}}{\boldsymbol{k}_{\perp}^{\prime 2}} \bar{\alpha}_{s}\left(\boldsymbol{k}_{\perp}^{\prime 2}\right) \hat{q}\left(\tau^{\prime}, \boldsymbol{k}_{\perp}^{\prime 2}\right) \\
Q_{s}^{2}(\tau) & =\hat{q}\left(\tau, Q_{s}^{2}(\tau)\right) \tau,
\end{aligned}
$$

by solving the above numerically and semi-analytically

Caucal Mehtar-Tani 2109.120412203 .09407
Poster by Mehtar-Tani later today

The scattering kernel: quantum corrections

- Non-local nature of quantum radiative corrections makes Coulomb/Molière tail less steep

$$
\mathcal{P} \propto k_{\perp}^{-4+2 \bar{\alpha}_{s}} \quad \bar{\alpha}_{s} \equiv \frac{\alpha_{s} N_{c}}{\pi}
$$

- Increased probability of largemomentum scatterings from non-local quantum corrections

Caucal Mehtar-Tani 2109.120412203 .09407
Poster by Mehtar-Tani later today

Medium-induced radiation: quantum corrections

- Universality of double logs: they also arise in the case of a double splitting with overlapping formation time in the soft limit Blaizot Mehtar-Tani, Iancu, Wu (2014)
formation times

Medium-induced radiation: quantum corrections

- Universality of double logs: they also arise in the case of a double splitting with overlapping formation time in the soft limit
formation times
formation times

- Ongoing effort to determine all corrections from overlapping formation times (real and virtual) within the harmonic oscillator approximation. Important to understand if assumed Markovian nature of medium-induced kernel holds for the cascades Arnold Iqbal Chang Gorda Rase Elgeadwy (2015-2022)

Arnold Iqbal Gorda 2112.05161 Arnold JHEP2203 (2021)
Poster by Iqbal later today

Meolumpinouceo rociotion: ouontum corrections

- Universality of double logs: they also arise in the case of a double splitting with overlapping formation time in the soft limit
formation times Blaizot Mehtar-Tani, Iancu, Wu (2014)
formation times

- Ongoing effort to determine all corrections from overlapping formation times (real and virtual) within the harmonic oscillator approximation. Important to understand if assumed Markovian nature of medium-induced kernel holds for the cascades Arnold Iqbal Chang Gorda Rase Elgeadwy (2015-2022)
- Latest news: universality holds not only for the double logs, but (with caveats) also for the accompanying single logs. Good news for their resummation!

Arnold Iqbal Gorda 2112.05161 Arnold JHEP2203 (2021)
Poster by Iqbal later today

The kinetic theory approach

The kinetic theory approach

- Transverse momentum broadening and radiation are key ingredients in the effective kinetic theory of QCD, together with drag, longitudinal momentum broadening and conversions Arnold Moore Yaffe (2003)

$$
\left(\frac{\partial}{\partial t}+\mathbf{v} \cdot \nabla_{\mathbf{x}}\right) f(\mathbf{p})=C^{2 \leftrightarrow 2}+C^{1 \leftrightarrow 2}
$$

The kinetic theory approach

- Transverse momentum broadening and radiation are key ingredients in the effective kinetic theory of QCD, together with drag, longitudinal momentum broadening and conversions Arnold Moore Yaffe (2003)
- Applications to jet physics:

AMY kinetic theory for jet thermalisation: Schlichting Soudi JHEP2107 (2021), poster by Soudi Wednesday
Factorised energy loss transport approach Dai Paquet Teaney Bass PRC105 (2022), poster by Dai Wednesday
Ke Wang JHEP2105 (2021), talk by Ke Thursday 17:30

The kinetic theory approach

- Transverse momentum broadening and radiation are key ingredients in the effective kinetic theory of QCD, together with drag, longitudinal momentum broadening and conversions Arnold Moore Yaffe (2003)
- How do these developments affect the kinetic description?

The kinetic theory approach: transport coefficients

The kinetic theory approach: transport coefficients

- Shear viscosity: efficiency of isotropisation is key

The kinetic theory approach: transport coefficients

- Shear viscosity: efficiency of isotropisation is key
- Direct isotropizing effect of transverse momentum broadening thus more important than its indirect effect as a driver of medium-induced radiation

The kinetic theory approach: transport coefficients

- Shear viscosity: efficiency of isotropisation is key
- Direct isotropizing effect of transverse momentum broadening thus more important than its indirect effect as a driver of medium-induced radiation
- From NLO corrections to broadening, radiation, drag\&diffusion and conversion, get (almost) NLO shear JG Moore Teaney (2018)

The kinetic theory approach: transport coefficients

- Shear viscosity: efficiency of isotropisation is key
- Direct isotropizing effect of transverse momentum broadening thus more important than its indirect effect as a driver of medium-induced radiation
- From NLO corrections to broadening, radiation, drag\&diffusion and conversion, get (almost) NLO shear JG Moore Teaney (2018)
- NLO large and completely dominated by NLO broadening

The kinetic theory approach: transport coefficients

- NLO large and completely dominated by NLO broadening
- Important observation: are we severely underestimating broadening at LO (excess screening shown before) and thus overestimating $\eta \sim 1 / \hat{q}$? Müller PRD104 (2021)
- Get as much non-perturbative input as possible!For a different way of merging pQCD and (4D) lattice see D. Bala's poster Wednesday for the photon rate, L. Altenkort's talk Wed 12:10
 for heavy-quark diffusion

The kinetic theory approach: thermalisation

- Many applications of kinetic theory to thermalisation

0
AMY at finite chemical potential and beam-energy dependence Schlichting Du PRL127, PRD104 (2021) Poster by X. Du Wednesday

- Critical exponents in bottom-up thermalisation Brewer Scheihing-Hitschfeld Yin 2203.02427, Mikheev Mazeliauskas Berges 2203.02299, poster by Scheihing-Hitschfeld

Attractors in kinetic theory talks by Plumari and Almalool Tuesday ~ 18

- ...
- We can worry about similarly problematic perturbative expansions for applications of kinetic theory to thermalisation. Can we try to estimate the systematics of typical extrapolations to $\alpha_{\mathrm{s}}=0.3(\mathrm{~g}=2)$?

The kinetic theory approach: thermalisation

- Recently, NLO corrections to isotropic thermalisation for overoccupied and underoccupied initial conditions Fu JG Iqbal Kurkela PRD105 (2022), talk by Fu Wed 9:20

Equilibration time

The kinetic theory approach: thermalisation

- Recently, NLO corrections to isotropic thermalisation for overoccupied and underoccupied initial conditions Fu JG Iqbal Kurkela PRD105 (2022), talk by Fu Wed 9:20

Equilibration time

- Two different NLO schemes which resum differently higher-order effects: proxy for NNLO

The kinetic theory approach: thermalisation

- Recently, NLO corrections to isotropic thermalisation for overoccupied and underoccupied initial conditions Fu JG Iqbal Kurkela PRD105 (2022), talk by Fu Wed 9:20

Equilibration time

- Robust behaviour but in this case no isotropizing effect of transverse momentum broadening

The kinetic theory approach: thermalisation

- Yet another (classical) complication arises in the IR in the case of anisotropies: plasma instabilities Mrowczynski, Romatschke Strickland, Arnold Lenaghan Moore
- Recently, instability subtracted momentum broadening kernel, together with a recipe for dealing with the instabilities, was provided in Hauksson Jeon Gale PRC105 (2022). Poster by Hauksson Wednesday also discusses anisotropy effects on jet
- Anisotropy found to reduce the scattering kernel in the QGP phase. An important step towards a comprehensive kinetic treatment of anisotropic plasmas, work in progress

Large\&anisotropic transverse momentum broadening in the glasma, posters by Czajka and Schuh Wednesday, talk by Carrington Thursday 11:30

Conclusions

- Many recent improvements in the determination of transverse momentum broadening and medium-induced radiation in the QCD plasma are instrumental in better quantifying theory uncertainties and narrowing the gap between Lagrangians and phenomenology
- Improved approximations and numerical solutions for the radiation rates
- Non-perturbative determination of the broadening kernel
- Quantum corrections: anomalous diffusion and double splitting
- Improved understanding of the systematics of extrapolations to intermediate couplings for transport\&thermalisation
- LOts and (N)LOts of progress, (N)LOts and (NN?)LOts and lat(tices) still to do

Extra slides

Istropic thermalisation at NLO

Ghiglieri,Moore,Teaney 1509.07773
$\mathrm{O}(\mathrm{g})$ corrections come from soft gluon:

- For $2 \rightarrow 2$: soft gluon legs or soft gluon loops.

Slide from
 Y. Fu's talk

Wed 9:20

- For $1 \leftrightarrow 2$:
- one-loop soft scatterings from the medium;
- wider-angle semi-collinear radiation.

We can construct collision operators that are equivalent up to NLO, with ambiguities at NNLO. (A general property of kinetic theory resummations.)

- use different results arising from these collision operators and their spread from LO to estimate of the uncertainty of NLO corrections.

Istropic thermalisation at NLO

Slide from
 Y. Fu's talk

Wed 9:20

NLO qualitatively similar to LO:(LO: Kurrea, ,Lu 1005.6318)

- the hard particles lose energy through the radiational cascade heating the soft thermal bath;
- the system thermalizes as the hard particles are quenched in the thermal bath.

Istropic thermalisation at NLO

Slide from
 Y. Fu's talk
 Wed 9:20

overoccupied--NLO--scheme2

NLO qualitatively similar to LO:(LO: Kurkea, Lu 1405.6318)

- self-similar direct energy cascade to UV.

The photon rate and the 4D lattice

Polynomial ansatz of the spectral function $\rho_{H}(\omega, \vec{k})=2\left(\rho_{T}(\omega, \vec{k})-\rho_{L}(\omega, \vec{k})\right)$,
J. Ghiglieri, O. Kaczmarek, M. Laine, and F. Meyer, Phys. Rev. D 94, 016005.

For $\omega<\omega_{0}$

$$
\rho_{f i t}^{H}=\frac{\beta\left(\omega_{0}\right) \omega^{3}}{2 \omega_{0}^{3}}\left(5-3 \frac{\omega^{2}}{\omega_{0}^{2}}\right)-\frac{\gamma\left(\omega_{0}\right) \omega^{3}}{2 \omega_{0}^{2}}\left(1-\frac{\omega^{2}}{\omega_{0}^{2}}\right)+\left(\delta_{0}\left(\frac{\omega}{\omega_{0}}\right)+\delta_{1}\left(\frac{\omega}{\omega_{0}}\right)^{3}\right)\left(1-\frac{\omega^{2}}{\omega_{0}^{2}}\right)^{2}
$$

Slide courtesy of D. Bala

See also

Cè Harris Meyer Steinberg Toniato PRD102 (2020)

- For $\omega>\omega_{0}$, NLO-LPM re-summed spectral function has been used. G. Jackson \& M. Laine, J. High Energy. Phys. 2019, 144
- β and γ is determined from the perturbative spectral function at ω_{0}.
- The parameter δ_{0} is determined in terms of δ_{1} to satisfy,

$$
\int_{0}^{\infty} d \omega \omega \rho_{H}(\omega, \vec{k})=0
$$

M. Ce et al. Phys. Rev. D 102, 091501(R)

- The ω_{0} should be chosen deep into the time-like region $\omega_{0}=\sqrt{k^{2}+(\pi T)^{2}}$.
- The lattice $T-L$ correlator is fitted with respect to δ_{1} for light quark at $1.5 T_{c}$ in $\mathrm{SU}(3)$ plasma.
Bala, Jackson, Kaczmarek (Poster).

The photon rate and the 4D latitice

Slide courtesy of D. Bala

See also

Cè Harris Meyer Steinberg Toniato PRD102 (2020)

Bala, Jackson, Kaczmarek (Poster).

- Low- ω part of the spectral function is estimated from lattice data.
- Effective diffusion coefficient $D_{\text {eff }}(k)=\frac{\rho_{H}(|\vec{k}|, \vec{k})}{2 \chi_{q}|\vec{k}|}$ calculated from these spectral functions.
- The statistical error on $D_{\text {eff }}$ is much smaller than the systematic uncertainty which has been obtained by varying ω_{0} between $\sqrt{k^{2}+(\pi T)^{2}}$ and $\sqrt{k^{2}+(2 \pi T)^{2}}$.
- At smaller momentum the $D_{\text {eff }}$ differs from the perturbative estimate.

