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How photons are made

• The hard partonic processes in the heavy ion collision 
produce quarks, gluons and prompt/primary photons

• At a later stage, quarks and gluons form a plasma.

• Scatterings of thermal partons produce partonic thermal 
photons

• A jet traveling can radiate jet-thermal photons

• Later on, hadronization. hadron gas photons

• (Some) hadrons decay into decay photons



How photons are made

• Theoretical description: convolution of microscopic rates over 
the macroscopic evolution of the medium

• In this talk

• overview and recent results on the microscopic rates, mostly 
for the thermal phase

• real photons and virtual photons (dileptons)



How to compute rates
• α≪1 implies that photon production is a rare 

event and that rescatterings and back-reactions 
are negligible: medium is transparent to/not 
cooled by photons

• At leading order in QED and to all orders in QCD 
the photon and dilepton rates are given by
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The ingredients

• electromagnetic current J: how the d.o.f.s couple to 
photons

• density operator ρ. In the equilibrium (possibly just 
local) approximation it becomes the thermal 
density                 and the whole thing a thermal 
average

• The action S: how the d.o.f.s propagate and interact
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Shopping lists

• pQCD: QCD action (and EFTs thereof), thermal 
average can be generalized to non-equilibrium. Real 
world: extrapolate from g≪1 to  αs~0.3
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Shopping lists

• pQCD: QCD action (and EFTs thereof), thermal 
average can be generalized to non-equilibrium. Real 
world: extrapolate from g≪1 to  αs~0.3

• lattice QCD: Euclidean QCD action, pure thermal 
average. Real world: analytically continue to 
Minkowskian domain

• AdS/CFT:            action, in and out of equilibrium, 
weak and strong coupling. Real world: extrapolate to 
QCD 

N=4



• Real, hard photon: k0=k≳T

• At one loop (αEM g0):

Kinematically forbidden. Need to kick one of the quarks  
off-shell. Works for dileptons (thermal Drell-Yan)

• Leading order photon is αEM g2

• Strength of the kick (virtuality) naturally
 divides the calculation in the distinct 
 2↔2 processes and collinear processes

The basics of pQCD photons
Perturbative Analysis

Jµ =
∑

q=uds
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Lightlike K: on-shell quarks kinematically disallowed!

BNL Photons: 5 December 2011: page 6 of 27
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• Cut two-loop diagrams (αEM g2)

 2↔2 processes (with crossings and interferences):

• Equivalence with kinetic theory: distributions x 
matrix elements

• IR divergence (Compton) when t goes to zero

2�2 processes

LO diagrams:

1 loop O(αEM):

K

Kinematically disallowed for light-like K
(both quarks can’t be on-shell simultaneously)

2 loops O(αEMαs):

K K

LO diagrams
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• The IR divergence disappears when Hard Thermal Loop 
resummation is performed Braaten Pisarski NPB337 (1990)

• In the end one obtains the result 

Kapusta Lichard Siebert PRD44 (1991) Baier Nakkagawa Niegawa Redlich ZPC53 (1992)
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Collinear processes

• These diagrams contribute to LO if small (g) angle radiation/
annihilation Aurenche Gelis Kobes Petitgirard Zaraket 1998-2000

• Photon formation times is then of the same order of the soft 
scattering rate ⇒ interference: LPM effect

• Requires resummation of infinite number of ladder diagrams

AMY (Arnold Moore Yaffe) JHEP 0111, 0112, 0226 (2001-02)
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Figure 5. Collinear diagrams. In the first case, called the bremsstrahlung diagram, the angle
between the emitted photon and the outgoing emitting fermion is of order g. In the second case,
called the pair annihilation diagram, it is the angle between the annihilating quark and antiquark
that is of order g. The diagrams where the gluon is attached to the other fermionic line are not
show. In both cases the gluon is soft and is scattering on the hard constituents of the plasma, i.e.,
it is an HTL gluon in the Landau cut. In these diagrams the gluon is scattering o↵ light quarks
(the hard lines at the bottom). The corresponding case with gluons is not shown. {fig_collinear}

In terms of the two-point function these processes correspond to diagrams with the

two nearly collinear fermion lines connected with arbitrary number of soft spacelike gluons

with same kinematics as Q. In [14, 15] Arnold, Moore and Ya↵e (AMY) showed that it is

only the ladder-type diagrams shown in Fig. 6 that contribute to leading order calculation;

the factors of g arising from additional vertices are canceled by near on-shell propagators

and large statistical factors arising from the gluonic propagators. The near on-shellness of

the quark lines makes the diagrams sensitive to thermal mass m2
1 ⇠ g

2
T

2 and the thermal

width � ⇠ g

2
T of the quark lines, which need to be consistently resummed. Furthermore

AMY showed how these diagrams can be resummed in terms of a Schrödinger equation

type di↵erential equation, and they obtained the complete leading-order results in [15]. In

Sec. 3 we will discuss in detail this equation in the context of the treatment of its NLO

corrections.

d��

d3k

����
coll

= = Re

0

BBBBBBBBB@

1

CCCCCCCCCA

⇤ 0

BBBBBBBBB@

1

CCCCCCCCCA

Figure 6. The uncrossed ladder diagrams that need to be resummed to account for the LPM e↵ect
in the collinear region. The cut shown here corresponds to the interference term on the right-hand
side. The rungs on the l.h.s. are HTL gluons in the Landau cut. On the r.h.s., the crosses at the
lower hand of the gluons represent the hard scattering centers, either gluons or fermions. {fig_lpm}
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Beyond LO pQCD

• Beyond leading order: test the reliability of 
perturbation theory

• Beyond thermal equilibrium: incorporate viscous 
corrections

• Beyond K2=0: dileptons

• Towards Tc: talk by Shu Lin



Beyond leading order
• The soft scale gT introduces O(g) corrections

g g

nB(p) ∼ T/p ∼ 1/g



Beyond leading order
• The soft scale gT introduces O(g) corrections

• In the  collinear sector: account for 1-loop rungs (related to 
NLO qhat). Euclidean (EQCD) evaluation
Caron-Huot PRD79, talks by Panero, Meyer 
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√

g
√

g

 soft Coulomb, 
spacelike

soft plasmon, 
timelike

Beyond leading order
• The soft scale gT introduces O(g) corrections

• In the  collinear sector: account for 1-loop rungs (related to 
NLO qhat). Euclidean (EQCD) evaluation
Caron-Huot PRD79, talks by Panero, Meyer 

• New semi-collinear processes: larger angle radiation, NLO 
in collinear radiation approx. Requires a “modified qhat”, 
relevance for jets too

g g

nB(p) ∼ T/p ∼ 1/g



• Add soft gluons to soft quarks: nasty all-HTL region

• Analyticity allows us to take a detour in the complex plane 
away from the nasty region  ⇒ compact expression

P

p+

Analytic



• Add soft gluons to soft quarks: nasty all-HTL region

• Analyticity allows us to take a detour in the complex plane 
away from the nasty region  ⇒ compact expression

• Summing all contributions: 
good convergence,
but with large 
cancellations 
between contributions:
error estimate of LO 
JG Hong Kurkela Lu 
Moore Teaney JHEP0503
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(L
O

+
N

L
O

) 
/ 

L
O

k/T

(LO + NLO)/LO

(LO + coll)/LO

(LO + soft+sc)/LO
αs=0.30

 0

 0.5

 1

 1.5

 2

 2  4  6  8  10  12  14

(L
O

+
N

L
O

) 
/ 

L
O

k/T

(LO + NLO)/LO

(LO + coll)/LO

(LO + soft+sc)/LO

αs=0.30

 0

 0.5

 1

 1.5

 2

 10  20  30  40  50  60  70  80  90

Figure 20. (a) The di↵erential rate d��/dk relative to the leading order rate as a function of k/T
(or equivalently CLO+NLO/CLO). The full next to leading order rate (LO+NLO) is a sum of the
leading order rate (LO), a collinear correction (coll), and a soft+semi-collinear correction (soft+sc).
The dashed curve labeled LO+coll shows the ratio of rates when only the collinear correction is
included, with the analogous notation for the LO+ soft+sc curve. The di↵erence between the
dashed curves provides a uncertainty estimate for the NLO calculation. (b) The same as (a) but
for larger k/T . {plot_ratio}

large cancellations we observe are rather accidental, and one should thus consider the

curves CLO(k/T ) + �Ccoll(k/T ) and CLO(k/T ) + �Csoft+sc(k/T ) as upper and lower limits

respectively of an “uncertainty estimate” of the NLO calculation.

In Fig. 19 we plot CLO+NLO(k/T ) and CLO(k/T ) for ↵s = 0.05, and Nc = 3, Nf = 3.

For the smaller coupling constant the NLO correction is always negative and rather flat,

and the magnitude of the two largely canceling contributions is also significantly smaller

than in the previous case.

– 37 –



Beyond thermal equilibrium

• 2↔2 processes (partonic and hadronic) are easily 
generalized by introducing viscous distributions

LO diagrams
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Compton scattering:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Pair annihilation:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Every time a scattering takes place, a quark can convert to a photon
⇒ For (K 2 = 0) t −→ 0, IR divergence:

D> ∝

∫

Λ2
IR

dq2
⊥

dσ

dq2
⊥

∝ ln

(
k0T

Λ2
IR

)

P

P 0

K

K 0 Z

ph. space
f(p)f(p0)(1± f(k0))|M|2�4(P + P 0 �K �K 0)

Thermal photon emission rates can be calculated by 

Viscous Photon Emission Rates: General Formalism
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6(15)Shen, Paquet et al. (2014)

Talk by C. 
Shen,Monday
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• Small t region: Hard Loop resummation

• Modification of collinear processes will be more 
complicated, also because of anisotropic gluon 
Hard Loops

Shen Heinz Paquet Kozlov Gale (2013)



pQCD dileptons

• Consider non-zero virtuality k0>k≥0.

• Drell-Yan contribution present

• loop corrections: real and virtual (with IR 
cancellations)

• If K2≪T2 LPM and/or HTL resummations become again 
necessary
Braaten Pisarski Yuan PRL64 (1990), Aurenche Gelis Moore Zaraket JHEP0212 (2002)

K
=

K
2

d�l+l�(k)

dk0d3k
= � ↵2

6⇡3K2

Z
d4XeiK·XTr⇢Jµ(0) J⌫(X)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∗
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

∗
⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠



pQCD dileptons
• Recently, complete thermal NLO (Drell-Yan + loop 

correction) rate for k>0, M2=K2~T2 Laine 1310.0164
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Figure 1: Strict loop expansion up to NLO. The same data is shown in two ways, as a function of

M/T (left) and as a function of k0/T (right), with k0 ≥
√

k2 + (0.1T )2 in the latter case. The gauge

coupling and the renormalization scale have been fixed as specified in appendix B (µ̄ = µ̄ref here).

where nF is the Fermi distribution and

∫

p
p nB =

π2T 4

30
,

∫

p
p nF =

7π2T 4

240
. (3.6)

In fig. 2 the expression from eq. (3.5) is compared with the full result from eq. (3.1). It is

observed that the OPE results are accurate for M >∼ 8T . This is somewhat sooner than for

generic individual NLO master spectral functions [23, 24]; the reason is that the LO result

has only exponentially small thermal corrections for M ≫ πT , so that large power corrections

appearing in the full result are suppressed by O(αs).

3.3. Towards the soft limit

As is visible in fig. 1, the NLO correction overtakes the LO term when k0 → k+, and

therefore the loop expansion breaks down. In this regime infinitely many loop orders need to

be resummed in order to obtain a consistent weak-coupling result. The technique goes under

the name of the Landau-Pomeranchuk-Migdal (LPM) resummation (the Hard Thermal Loop

(HTL) resummation is an ingredient but not sufficient on its own), and has been implemented

for k ∼ πT in ref. [12] and for k = 0 in ref. [14]. The outcome cannot be expressed in analytic

form, but requires a numerical solution of an inhomogeneous Schrödinger-type equation with

a light-cone potential describing interactions.

6

• NLO rate for k>0, K2≪T2 coming soon
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Figure 3: Thermal dilepton rates according to NLO perturbation theory, for T = 0.3 GeV (left) and

T = 1 GeV (right), as a function of photon energy. The plots are for Nf = 3 and ΛMS = 360 MeV [39].

Bands from scale variation are shown for the three smallest photon masses (cf. appendix B). The case

T = 1 GeV is shown in order to permit for a comparison with fig. 7 of ref. [12]; the results are close

except for an additional spike at the smallest k0 for M < 1.5 GeV in ref. [12]. (Peculiarly it appears

that completely correct LO results for M ≪ πT have not been plotted in the literature [13].)

4. Dilepton spectra

We proceed to computing dilepton production spectra. Going over to physical units, viz.

dNµ−µ+

d4Xd4K
×GeV4fm4 =

dNµ−µ+

d4Xd4K

(

1000

197.327

)4

, (4.1)

results are shown for Nf = 3, fixing ΛMS ≃ 360 MeV [39], in fig. 3. The renormalization scale

and its variation are chosen as specified in appendix B. Two temperatures are considered, and

at each temperature results are plotted as a function of the photon energy k0, for fixed values

of the invariant photon mass M . For T = 1 GeV a good overall agreement with the results of

ref. [12] can be observed (on a logarithmic scale), despite the very different approximations

inherent to the computations. For M >∼ 1 GeV the results of the present study are more

accurate than previous ones and, judging from the scale dependence, contain uncertainties

on a 10–30 percent level.2

2The numerical results displayed in fig. 3 can be downloaded from www.laine.itp.unibe.ch/dilepton-nlo/.
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And the lattice?
• What is measured directly is the Euclidean 

correlator

• Analytical continuation 

• It contains much more info (full spectral function), 
but hidden in the convolution. Inversion tricky, 
discrete dataset with errors
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Zero-momentum dileptons
• if k=0: spectral function encodes physics of dileptons 

and electrical conductivity, easier on the lattice

Ding Francis Kaczmarek Karsch Laermann Mukherjee Müller 
Söldner 1301.7436

Thermal dilepton rates from quenched lattice QCD M. Müller

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10

ρii(ω) / ωT

ω/T

HTL
T=1.45Tc
T=1.1 Tc

Born

 1e-10

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0  1  2  3  4  5  6

ω/T

dW/dωd3p

HTL
T=1.45Tc
T=1.1 Tc

Born Rate

Figure 3: Left: Spectral function as fitted to the vector correlation function. Two lines are shown for
each temperature as a result of the systematic error estimation, given by the two rii with the minimal and
maximal cBW that can be obtaind via the Breit-Wigner + truncated continuum ansatz (3.1), while maintaining
a c/d.o.f < 1.1 in the fit. Results from the hard thermal loop resummation scheme (HTL) are also included
in the plot [15]. Right: Thermal dilepton rate calculated from the spectral function (2.8).
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Figure 4: Continuum extrapolation of the logitudinal (left) and transversal (right) vector correlation function
GV/Gfree

V at non-zero momentum.

5. Conclusion

Lattice calculations of the vector correlation function have been performed for two temper-
atures in the deconfined phase of QCD. Calculations at different lattice spacings were used for a
successfull continuum extrapolation to remove cut-off effects. Using a phenomenologically moti-
vated ansatz, the vector spectral function to the continuum-extrapolated correlation function was
obtained, giving access to the dilepton rate and the electric conductivity of the medium at the
given temperatures. Within current systematic uncertainties, the electric conductivity divided by
temperature and the thermal dilepton rates are are compatible at 1.1Tc and 1.45Tc. A continuum ex-
trapolation was also performed for the correlation functions at a range of finite momenta, opening

7



Finite-momentum 
• If k>0 spf describes DIS (k0<k), photons (k0=k) and 

dileptons (k0>k). Finite k tricky on the lattice
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• First comparison at the correlator level, with 
several caveats

A first comparison
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Figure 4: Imaginary-time correlators based on eq. (5.12), normalized to eq. (5.13), for Nf = 0. The

perturbative values are compared with lattice data from ref. [19] (to make use of the data a continuum

value of the quark-number susceptibility is needed; we have assumed χq ≃ 0.88T 2). The data are for

T = 1.1Tc but according to ref. [19] they are close to those at T = 1.45Tc where the perturbative

expressions were evaluated. Note that for k = 0, G22+33 = 2G11, and the violation of this relation

towards small τT is a reflection of systematic uncertainties related to the continuum extrapolation.

same vacuum factor; the results are loop-level correct for |K2| ≫ (πT )2 and LO correct at

|K2| ∼ (πT )2 but in general underestimate thermal corrections.

Denoting ℓ ≡ ln(µ̄2/K2), the vacuum factor [8] can be expressed as

R(K2) ≡ θ(K2)sign(k0)
{

r0,0 + r1,0 as +
(

r2,0 + r2,1 ℓ
)

a2s

+
(

r3,0 + r3,1 ℓ+ r3,2 ℓ
2
)

a3s +
(

r4,0 + r4,1 ℓ+ r4,2 ℓ
2 + r4,3 ℓ

3
)

a4s +O(a5s)
}

, (5.11)

where as ≡ αs/π and the coefficients are identical to those listed in ref. [20] (the terms

r0,0 + r1,0 as reproduce the factor 1 + 3αsCF
4π from eq. (3.5)). We set

ρrefT ≡ ρLO
T R(max{K2, (πT )2}) , ρrefL ≡ ρLO

L R(max{K2, (πT )2}) , (5.12)

freezing the R-factor when entering the thermal domain. The renormalization scale is fixed

as specified in appendix B. The results are normalized to the free correlator for k = 0 [42],

Gfree
ii,k=0(τ) ≡ 6T 3

[

π(1− 2τT )
1 + cos2(2πτT )

sin3(2πτT )
+

2 cos(2πτT )

sin2(2πτT )
+

1

6

]

. (5.13)

The results are shown in fig. 4, and indicate good overall agreement.
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• Plot and perturbative calculation Laine 1310.0164 
Lattice Ding Francis Kaczmarek Karsch Laermann 
Mukherjee Müller Söldner 1301.7436
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Conclusions

• Knowledge of the rates and the related uncertainties important 
for phenomenology

• NLO calculations for photons and large-mass dileptons are an 
important step in that direction and bring associated technical 
goodies to be employed elsewhere (jets, qhat)

• The lattice is already providing partial results for the spectral 
functions/rates and non-perturbative ingredients to 
perturbative calculations (qhat, transverse splitting kernels). 
Possible interplays in the future? Also, comparisons!
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Towards Tc
• Matrix model approach to distribution

 

• Small enhancement for dileptons

• Large suppressions for photons, both 2↔2 and collinear

Talk by Shu Lin, Monday

• It would be interesting to see for which dilepton mass 
the enhancement becomes a suppression

Effective matrix model 
Polyakov loop 

can be modeled by classical background field ~ 1/g 

Non-perturbative 

high T limit 

Dumitru, Guo, Hidaka, 
Korthals Altes, Pisakrski, PRD 
2011, 2012 

Q as imaginary chemical potential, reduces quark number density by the loop 

Similar reduction for gluon number density 

1
1 ~ 

1
11

/
1

/)( ��¦
 

� TE

N

a
TiQE eeN a

" 1d"f(E) !

Enhanced dilepton production 
𝑞 

𝑞 

Suppression of dilepton rate due to reduced of quark number density?  NO! 

Dilepton rate  ~ 

The effect of imaginary chemical potential cancels for a color singlet initial state. 
 
Moreover, the rate is even enhanced beyond Boltzmann approximation! 

Boltzmann approximation 

a 

a 

Effect of Q cancel out! 

Enhanced dilepton production 
𝑞 

𝑞 

Suppression of dilepton rate due to reduced of quark number density?  NO! 

Dilepton rate  ~ 

The effect of imaginary chemical potential cancels for a color singlet initial state. 
 
Moreover, the rate is even enhanced beyond Boltzmann approximation! 

Boltzmann approximation 

a 

a 

Effect of Q cancel out! 

Suppressed  photon  production:  2→2  
processes  

Compton scattering Pair annihilation 

b 

a 

a 

a b 

a b 

b 

𝛾 

𝛾 

¦ �����

ba

TiQiQETiQE baa

eege
,

/)(/)(22 21¦ ����

ba

TiQETiQE ba

eege
,

/)(/)(22 21

Effect of imaginary chemical potential does not cancel out completely in the initial 
states.                                       
                               Suppression of  photon  rate  from  2  →  2  processes. 

No cancellation! Partial cancellation 



AdS/CFT approaches
• Gauge a U(1) subgroup of             : that’s your 

photon

• LO at weak coupling,             at strong coupling 
in equilibrium
Caron-Huot Kovtun Moore Starinets Yaffe JHEP06012 (2006)

• 1/λ corrections Hassanain Schvellinger JHEP1212 (2012)

• Holographic thermalizations (out of 
equilibrium) Baier Stricker Taanila Vuorinen (2012), 
Steineder Stricker Vuorinen (2013)

N = 4
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Figure 5: Photoemission spectrum for different values of λ, as a function of the light-like momen-
tum of the emitted photon divided by the equilibrium temperature, k/T . Notice that in fact we
show the curves for dΓγ/dk divided by αem(N2 − 1)T 3. Solid, long-dashed, dashed, small-dashed,
tiny-dashed, and dotted lines correspond to decreasing values of λ = very large (in fact it is the
analytical expression from supergravity with no string theory corrections), to 200, 150, 100, 50 and
35, respectively. On the other hand, we show two additional curves corresponding to the weakly
coupled SYM obtained in [22]: a small-dashed line and a long-dashed line, which represent the
perturbative SYM plasma for λ = 0.2 and 0.5, respectively.

25

c=0.8

c=0

c=1

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

wêT

cm
m

Nc2 Tw

20 40 60 80
-0.10

-0.05

0.00

0.05

0.10

wêT

R
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Figure 5. As in fig. 4, but for � = 300 (left) and � = 100 (right).

virtual photons, i.e. dileptons at rest, are the first ones to thermalize, confirming the

observations made in somewhat di↵erent contexts in [44, 45]. Finally, we note that in all

cases studied the amplitude of the oscillations in R decreases at large !, consistent with

the known top-down nature of thermalization at infinite ’t Hooft coupling.

At finite values of �, one expects to witness a qualitative change in the behavior of the

deviation function (now R?), as reported for real photons (c = 1) in [30]. To investigate

what happens at nonzero virtuality, we determined the transverse spectral density �? and

the corresponding R? for the same values of c considered above, but setting now � = 300

and 100, cf. fig. 5. Similarly to the case of real photons, we again observe the asymptotic

behavior of the fluctuation amplitude changing from a 1/! suppression towards linear

growth as the coupling is decreased. This behavior, however, appears to depend on the

virtuality rather strongly, with the transition happening later as c is decreased; in the case

of maximal virtuality, c = 0, the amplitude of R? even appears to approach a constant at

large !. Finally, we note that the � = 1 observation of the amplitude of R? decreasing

with increasing virtuality seems to hold at all coupling strengths considered.

Just as in the case of [30], one must exercise some caution with the above results,

not least because both the quasistatic approximation and the strong coupling expansion

– 13 –

• Hassanain Schvellinger 
strong coupling for 
decreasing lambda (finer 
dashing) compared with 
LO weak coupling 
(leftmost curves)

• Steineder et al strong 
coupling e.m. spectral 
function at 
equilibrium (dashed) 
and in the 
thermalizing metric 
(cont.). c=k/ω
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LPM resummation
• Quark statistical functions × DGLAP splitting × 

transverse evolution

• Transverse diffusion and Wilson-loop correlators evolve 
the transverse density f along the spacetime light-cone

Zakharov 1996-98 AMY 2001-02 
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• Asymptotic mass

• Light-cone Wilson loop, related to 

LPM resummation: two inputs

• Soft contribution becomes Euclidean! Caron-Huot PRD79 
(2008), can be “easily” computed in perturbation theory 
Possible lattice measurements Laine Rothkopf JHEP1307 
(2013) Panero Rummukainen Schäfer 1307.5850 talk by Panero

y2 x2

x1y1

Figure 2.1: Static Wilson loop with edges y1 = (�TW /2, r/2), x1 = (TW /2, r/2), y2 =
(�TW /2,�r/2) and x2 = (TW /2,�r/2). Time direction is from left to right, thus the
quark trajectories are horizontal and the equal-time endpoint Wilson lines are vertical.

where P is the path-ordering operator and the integration contour ⇤ is represented in
Fig. 2.1. The Wilson loop vacuum amplitude can also be expressed as a path integral

hW⇤i =
Z

DADqDqe�iS(0)
TrP exp

⇢

�ig

I

⇤
dxµAa

µ(x)T a

�

(2.8)

where q and q are the light quark fields and S(0) is the Yang-Mills plus light-quark action
of QCD.
At zeroth order in the multipole expansion (2.3) and in the static limit the corresponding
pNRQCD Green function can be derived from the Lagrangian (1.37)

GpNRQCD = Z(0)
s (r)�3(x1 � y1)�3(x2 � y2)e�iT

W

V
(0)
s

(r). (2.9)

We now need to single out the soft scale: exploiting the fact that this scale is much
greater than the ultrasoft scale E we can consider the large TW limit of the Wilson loop,
equivalent to the �E ! 0 limit. We thus have

i

TW
loghW⇤i = u0(r) + i

u1(r)
TW

+O
✓

1
T 2

W

◆

, (2.10)

and in the infinite-time limit the higher-order terms in the 1/TW expansion are sup-
pressed. We have also dropped terms that do not depend on r, such as self energies.
These terms can arise both in the perturbative and non-perturbative regions, but are
not relevant for the potential. The matching condition GNRQCD = GpNRQCD at the
matching scale µ (the two theories and their Green functions are of course in general
not equal; they are so only in the region where pNRQCD exists) then implies

(

V (0)
s (r) = u0(r)

log Z(0)
s (r) = u1(r)

(2.11)

So we see that the potential at this order of the multipole expansion is simply linked to
the vacuum expectation value of the Wilson loop by the relation

V (0)
s (r) = u0(r) = � lim

T
W

!1

1
iTW

loghW⇤i. (2.12)

22

Collinear case

Collinear ⇒ almost on-shell ⇒ large x separation

x− ≪ x⊥ ≪ x+
(1/T ≪ 1/gT ≪ 1/g2T )

Consider spacetime trajectory of q, q̄:

Jµ Jµ

x

x

Trajectory in

Trajectory in

M

M

Wilson Loop Controls
Gauge Interactions

Need x⊥-separated Wilson loop.

Spacetime picture pioneered by B. Zakharov, hep-ph/9607440,9807540

XQCD, Bern, 4 Aug. 2013: Seite 14 von 25

L

/ eC(x?)L

BDMPS-Z, Wiedemann, Casalderrey-Solana Salgado, D’Eramo Liu 
Rajagopal, Benzke Brambilla Escobedo Vairo

m2
1 = 2g2CR

✓Z
d3p

(2⇡)3
nB(p)

p
+

Z
d3p

(2⇡)3
nF(p)

p

◆

2.2 Application to Jet Evolution

The dominant energy loss mechanism of high energy particles (at weak coupling) is
bremsstrahlung (including quark-antiquark pair production), triggered by soft colli-
sions against plasma constituents. The theoretical description of these processes, at
the leading order in the coupling, is well-established [28] [29] [30]. Their duration tform
depends on the energy of the participants, and can interpolate between the Bethe-
Heitler (single scattering) regime tform ∼ E/q2⊥ ∼ E/m2

D at energies E <
∼ T , and the

Landau-Pomeranchuk-Migdal (LPM) [31] (multiple-scattering) regime at high ener-
gies E ≫ T , with tform ∼

√

E/q̂, in which destructive interference between different
collisions plays a significant role.

In all of these regimes, however, the description factors into a “hard” collinear split-
ting vertex (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi, DGLAP vertex [33]), times an
amplitude (wavefunction in the transverse plane) which describes the in-medium evo-
lution of the vertex. The latter accounts for the collisions which trigger, and occur
during, the splitting process [28] [29] [30]. The DGLAP vertices themselves only in-
volves hard scale physics (in essence, they are Clebsch-Gordon coefficients between
states of different helicities) and thus cannot receive O(g) corrections; the NLO ef-
fects, which come from soft classical fields with p ∼ gT , are included in their dressing
amplitude.

In section 6 we discuss these amplitudes at NLO and show that the relevant (three-
body) collision kernel factors as a sum of two-body kernels C(q⊥), exactly like the LO
one does [28] [29] [30, 32]. As a consequence, our results can be used to give a full NLO
treatment of radiative jet energy loss; one must simply include the NLO shift (20) to
the two-body kernel C(q⊥) which serves as an input to these calculations2.

2.3 Momentum broadening coefficient (q̂)

When the effects of a large number of small collisions are added together, it is natural
to replace them by an effective diffusive process. The diffusion coefficient relevant for
transverse momentum broadening, q̂, is defined as the second moment of the collision
kernel (1):

q̂ ≡
∫ qmax

0

d2q⊥
(2π)2

q2⊥C(q⊥). (2)

The ultraviolet cutoff |q⊥| < qmax is needed to deal with the weak power-law falloff
C(q⊥) ∼ g4T 3/q4⊥ at large q⊥, which leads to a logarithmic dependence of q̂ on qmax.
This is a leading order logarithm; below we shall comment on the value of the cutoff
qmax. Using our NLO kernel (20) we can calculate the expansion of q̂ up to terms of

2 For instance, one would simply modify “C(q⊥)” in [32], which is actually equal to C(q⊥)/(g2CsT )
in our conventions.
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• Seemingly different processes boiling down to wider-angle 
radiation

• Evaluation: introduce “modified    ” that keep tracks of the 
changes in the small light-cone component p- of the quarks

• The “modified    ” can also be evaluated in EQCD   
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• For v=xz/t=∞ correlators (such as propagators) are the 
equal time Euclidean correlators.

• Causality: retarded functions analytic for positive 
imaginary parts of all timelike and lightlike variables: 
the above result can be extended to the lightcone

• The sums are dominated by the zero mode for soft 
physics=>EQCD!

• Equivalent to sum rules

Grr(t = 0,x) =
PZ

p

GE(!n, p)e
ip·x

Euclideanization of light-cone soft 
physics
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Figure 21. The di↵erential rate, d��/dk, relative to the leading order rate as described in Fig. 20,
but for ↵s = 0.05. {plot_ratio_05}

In Figs. 20 and 21 we plot the di↵erential photon emission rates d��/dk relative to the

leading order rate, (LO+ NLO)/LO, for two di↵erent values of the coupling constant. The

reasonable, but somewhat ad hoc, “uncertainty estimate” described above can be inferred

from the di↵erence between the upper and lower dashed curves, which include either the

collinear or the soft+semi-collinear correction, but not both.

For the largest coupling, ↵s = 0.3, NLO corrections are modest and positive, although

the “uncertainty band” is rather large – of order 50% (see Fig. 20). At intermediate

coupling, ↵s = 0.15, the cancellation between the collinear and semi-collinear+soft contri-

butions is quite dramatic, causing the LO+NLO result to be within a few percent of the

LO rate (not shown). Nevertheless, the uncertainty band remains rather large – of order

40%. Finally, at the smallest coupling ↵s = 0.05, the (LO+NLO)/LO ratio is somewhat

larger than at intermediate coupling, but with a considerably smaller uncertainty band

(Fig. 21).

7 Conclusions
{sec_concl}

We have computed the photon production rate to NLO of an equilibrated, weakly-coupled

quark-gluon plasma. The contributions to the LO rate can be divided into distinct kine-

matical regimes — the hard, soft and collinear regions. The contributions arising from the

hard and the soft regions have logarithmic sensitivity to the details of how the kinematical

regions are divided. However, this dependence cancels in the sum. At NLO the soft and

collinear regions receive O(g) corrections, and a new “semi-collinear” region starts to con-

tribute here. We have dealt with the collinear region in Sec. 3, with the soft region in 4,

and with the semi-collinear region in 5.

The collinear regime is a↵ected by the LPM interference of multiple scatterings through

the integral equation (3.1). As we showed, computations are most easily performed in

impact parameter space and the resulting O(g) perturbation to the LO result is given
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Figure 19. The functions C(k/T ) for Nc = 3, Nf = 3 as in Fig. 18, but for ↵s = 0.05. {plot_c_5_1}
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Figure 20. (a) The di↵erential rate d��/dk relative to the leading order rate as a function of k/T
(or equivalently CLO+NLO/CLO). The full next to leading order rate (LO+NLO) is a sum of the
leading order rate (LO), a collinear correction (coll), and a soft+semi-collinear correction (soft+sc).
The dashed curve labeled LO+coll shows the ratio of rates when only the collinear correction is
included, with the analogous notation for the LO+ soft+sc curve. The di↵erence between the
dashed curves provides a uncertainty estimate for the NLO calculation. (b) The same as (a) but
for larger k/T . {plot_ratio}

large cancellations we observe are rather accidental, and one should thus consider the

curves CLO(k/T ) + �Ccoll(k/T ) and CLO(k/T ) + �Csoft+sc(k/T ) as upper and lower limits

respectively of an “uncertainty estimate” of the NLO calculation.

In Fig. 19 we plot CLO+NLO(k/T ) and CLO(k/T ) for ↵s = 0.05, and Nc = 3, Nf = 3.

For the smaller coupling constant the NLO correction is always negative and rather flat,

and the magnitude of the two largely canceling contributions is also significantly smaller

than in the previous case.
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Figure 20. (a) The di↵erential rate d��/dk relative to the leading order rate as a function of k/T
(or equivalently CLO+NLO/CLO). The full next to leading order rate (LO+NLO) is a sum of the
leading order rate (LO), a collinear correction (coll), and a soft+semi-collinear correction (soft+sc).
The dashed curve labeled LO+coll shows the ratio of rates when only the collinear correction is
included, with the analogous notation for the LO+ soft+sc curve. The di↵erence between the
dashed curves provides a uncertainty estimate for the NLO calculation. (b) The same as (a) but
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large cancellations we observe are rather accidental, and one should thus consider the

curves CLO(k/T ) + �Ccoll(k/T ) and CLO(k/T ) + �Csoft+sc(k/T ) as upper and lower limits

respectively of an “uncertainty estimate” of the NLO calculation.

In Fig. 19 we plot CLO+NLO(k/T ) and CLO(k/T ) for ↵s = 0.05, and Nc = 3, Nf = 3.

For the smaller coupling constant the NLO correction is always negative and rather flat,

and the magnitude of the two largely canceling contributions is also significantly smaller

than in the previous case.
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• The only transport coefficient known so far at NLO is the 
heavy quark momentum diffusion coefficient, which is defined 
through the noise-noise correlator in a Langevin formalism. 
In field theory it can be written as

• The NLO computation factors in the coefficient C, which 
turns out to be sizeable

Caron-Huot Moore PRL100, JHEP0802 (2008)

NLO transport coefficients

� =
g2

3Nc

Z +⇥

�⇥
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that, to make the qualitative discussion here more precise, we will need to perform a careful

diagrammatic approach based on power counting. There is one common feature of the sources

for correction we have listed, however; all involve the influence of soft gluons. This observation

suggests that the calculation may be rephrased in terms of an effective theory of gT scale

physics, in which the hard scale ∼ T has been integrated out. This is precisely Braaten and

Pisarski’s HTL effective theory [10]. Carrying out a careful diagrammatic calculation within

this effective theory is the subject of the body of this paper; in the remainder of this section

we will present the results.

2.3 Results: QCD

The squared matrix elements for the processes of Fig. 1, summed over the initial and final

states of the light scattering targets and final states of the heavy quark, and averaged over

the initial states of the heavy quark, have been evaluated in [19], yielding

κLO ≡ g4CH

12π3

∫ ∞

0
k2dk

∫ 2k

0

q3dq

(q2 + m2
D)2

×

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Nc nB(k)(1+nB(k))

(

2 − q2

k2
+

q4

4k2

)

+Nf nF (k)(1−nF (k))

(

2 − q2

2k2

)

,
(2.4)

where CH = 4
3 in QCD is the quadratic Casimir of the heavy quark representation, and

mD =
√

1.5gT in QCD with Nf=3 flavors of light quarks. Formally taking mD ≪ T , the

integral is dominated by k ∼ T and q in the logarithmic range mD
<∼ q <∼ T . The leading

behavior in g of Eq. (2.4) can be obtained from the leading behavior in m2
D/k2 of the q

integral. Making room for the next-to-leading order correction C, the result can be written:

κ=
CHg4T 3

18π

([

Nc+
Nf

2

][

ln
2T

mD

+ξ

]

+
Nf ln 2

2
+

NcmD

T
C + O(g2)

)

. (2.5)

Here ξ = 1
2 −γE + ζ′(2)

ζ(2) ≃ −0.64718. The leading order part of Eq. (2.5) was given explicitly in

[19] (it could also have been extracted from the nonrelativistic limit of earlier results [14,20].)

The dependence of the next-to-leading order correction on physical parameters is contained in

the coefficient multiplying C, which itself is a pure number: all of the above-mentioned next-

to-leading order corrections depend on physical parameters in the same way as an O(mD/T )

fraction of the gluon contribution to κLO.

Expression Eq. (2.4) itself contains O(g) corrections, giving rise to a rather trivial con-

tribution2 to C, C2→2 = 21
8π ≃ 0.8356. It arises wholly from the k ∼ gT region of the gluon

contribution to Eq. (2.4), where the result of the q integration is poorly described by the

leading term of its m2
D/k2 expansion, which was used to obtain the leading order behavior

Eq. (2.5). Although slightly tedious, the evaluation of C2→2 is entirely straightforward and we

do not present it here. In section 4 we compute the difference between the full next-to-leading

order momentum diffusion coefficient, and what is already incorporated in κLO, and obtain

C̃ ≃ 1.4946. Thus C ≡ C2→2 + C̃ ≃ 2.3302.

2In [15] this contribution was named CEq. (4).
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Figure 3: Comparison of leading and NLO results for Nf = 3 QCD as a function of coupling.

Our result Eq. (2.5) is plotted in Fig. 3. A simple-minded estimate of the regime of

validity of perturbation theory can be given by equating the size of the correction to the size

of the leading-order result. What is usually referred to in the literature as being the leading

order result is Eq. (2.4), numerically integrated at a given value of the coupling (this is the

curve called “leading order” in Fig. 3): the correction becomes as large as this leading order

result when αs >∼ 0.04. This suggests that at that point perturbation theory starts to get into

trouble. For this reason, and as should be clearly suggested by the plot, we do not believe

that our calculation can be directly used as an “improvement” to the determination of κ in

the context of heavy ion collisions, where phenomenologically realistic values of the coupling

are in the range αs ∼ 0.3 − 0.5. Rather our results signal difficulties with the approach.

Nevertheless we would not like to sound overly pessimistic and conclude that our results

signal that no prediction beyond αs = 0.05 is possible. Rather, the real question now is how

large the higher order corrections are, and more pertinently, which parts of C may duplicate

themselves in higher-order terms, in some more or less predictable (and therefore resummable)

fashion.

Consider for instance the difference between the two lowest curves of Fig. 3, which is

attributable to C2→2, up to terms which are of yet higher order in the mD/T expansion of

Eq. (2.4). This contribution, which can be evaluated knowing only the tree-level matrix

elements with massless external states (and HTL corrections resummed on the exchanged

gluon), is better described as an “ambiguity” in the leading-order result rather than as a

correction to it. This ambiguity is large because the Coulomb scattering processes against

soft gluons (which give the small k contribution to Eq. (2.4)) are poorly described by the

leading term of an mD/T expansion. This is unrelated to the question of whether these

processes are correctly described by the right-hand side of κLO, which is the most pertinent
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