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GWs from equilibrium sources
• GWs can be produced from eq. too. Well known 

Weinberg

• In thermal eq. particle scatter ⇒ GW production

• Naive power counting: for momentum k>T

with some internal plasma coupling, the gravitational 
coupling and a Boltzmann suppression

• Since k~3T Γ must be small. Is that always true?
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In this talk
• Go beyond this usual assumption

• Use a modern, consistent Thermal Field Theory 
framework

• Try to give reliable estimates for T>160 GeV

• In particular, concentrate on the IR: for k≪T collective 
phenomena enter the rate and change the previous 
estimate

JG Laine JCAP1507 (2015)



Outline

✓ Introduction and motivation

• Overview and formalism

• The IR rate and the viscosity of plasmas

• The k~T rate

• Embedding the rates in cosmology: limits and 
prospects for detection



 

Overview



Equilibrium production
• GWs produced from an equilibrium plasma, but not in 

equilibrium with it. 

• Similar to photon production from the QCD plasma in 
heavy-ion collisions. Common aspect: reinteraction 
(rescatterings/absorptions) and backreaction (cooling) 
negligible. In the photon case because αEM≪αs

• There <nem>=0 and <Jem>=0, but thermal fluctuations 
⇒ charge and current fluctuations ⇒ photons

Because of diffusion, the charge fluctuations induce electromagnetic currents, and currents

in turn source photons. Currents can also directly originate from fluctuations. Assuming

that the photons produced do not equilibrate as fast as the plasma, which is the case for

instance for the plasma generated in heavy ion collision experiments, the thermal average of

their production rate can be evaluated. A text-book computation shows that the rate per

unit volume can be expressed as [35, 36]

dΓγ(k)

d3k
=

1

(2π)32k

∑

λ

ϵ(λ)µ,kϵ
(λ)∗
ν,k

∫

X
eiK·X

〈

Jµ
em(0)J

ν
em(X )

〉

, (1.2)

where K ≡ (k,k), k ≡ |k|; X ≡ (t,x); K ·X ≡ kt−k ·x; and ϵ(λ)µ,k denote polarization vectors.

For k = k e3, the polarization sum only couples to the transverse components J1,2
em .

For small k ≪ T , operator ordering plays no role in eq. (1.2), and the fluctuations are also

uncorrelated in space and time [34]. Their amplitude is related to diffusion or, equivalently,

to conductivity (σ). This yields finally

dΓγ(k)

d3k

k<∼α2
sT

≈
2Tσ

(2π)3k
∼

αemT
2

(2π)3k α2
s ln(1/αs)

, (1.3)

where we inserted the parametric form of the conductivity of a QCD plasma [37, 38]. For large

k >∼ 3T , in contrast, the rate originates from particle scatterings rather than hydrodynamic

fluctuations, and has the parametric form [39, 40]

dΓγ(k)

d3k

k>∼ 3T
∼

αemαs ln(1/αs)T
2e−k/T

(2π)3k
. (1.4)

In the following we show that results analogous to eqs. (1.3) and (1.4) apply to gravitational

waves, just with the replacements αem → T 2/m2
Pl and αs → α.

Our presentation is organized as follows. After deriving an expression for the gravitational

wave production rate in sec. 2, we analyze the structure of the energy-momentum tensor

correlator for k ≪ T in sec. 3. The quantity parametrizing this structure, the shear viscosity,

is briefly discussed in sec. 4. In sec. 5 we turn to the other case k >∼ 3T and compute the

logarithmically enhanced terms in this regime. The results are embedded in a cosmological

background in sec. 6 and compared with a well-studied non-equilibrium source in sec. 7.

Section 8 offers some conclusions and an outlook.

2. Production rate of gravitational waves from thermal equilibrium

As a first ingredient, we consider the rate at which energy density is emitted in gravitational

waves. The derivation can be carried out in two different ways: by treating gravitons as

quantized particles, or through a purely classical analysis. We start with the first method,
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Photon production

• For            things go as you’d expect (but a very tricky 
calculation to get the actual numbers)

LO Arnold Moore Yaffe (AMY) JHEP0111 JHEP0112 (2001)
NLO JG Hong Lu Kurkela Moore Teaney JHEP1305 (2013)

• For k≪T the amplitude of J fluctuations is related to the 
conductivity of the plasma, a collective phenomenon

AMY JHEP0011 (2000), JHEP0305 (2003)
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Graviton production
• Start from textbooks: TT gauge, Minkowski background 

(cosmological expansion later)
s

• hTT superposition of forward and backward propagating 
GWs. By taking average over oscillations rewrite E as

s
• Canonical form! (Up to trivial normalization) Then do 

the same as for photons (but taking ρGW rather than Γγ)

leading to a result analogous to eq. (1.2). We work first in Minkowskian spacetime, adding

cosmological expansion in sec. 6.

The linearized equation of motion for the metric perturbation hij in the traceless transverse

gauge reads

ḧTT
ij −∇2hTT

ij = 16πGTTT
ij , (2.1)

where G = 1/m2
Pl. The right-hand side of this equation plays the role of the electromagnetic

current in the photon case. The classical energy associated with gravitational waves reads

EGW =
1

32πG

∫

x∈V

[

ḣTT
ij (t,x)

]2
, (2.2)

where V is a volume. It is well-known that the corresponding energy density cannot be

localized. However, if we express a free hTT
ij as a usual linear combination of forward and

backward-propagating plane waves, and omit fast oscillations exp(±2iωt), then eq. (2.2) can

be re-interpreted as a Hamiltonian with a familiar canonical form:

H ≡ ⟨⟨EGW⟩⟩ =
1

64πG

∫

x∈V

{

[

ḣTT
ij (t,x)

]2
+

∣

∣∇hTT
ij (t,x)

∣

∣

2
}

. (2.3)

Here ⟨⟨...⟩⟩ denotes an average over an oscillation period. From eq. (2.3) canonically normal-

ized fields can be identified as ĥTT
ij ≡ hTT

ij /
√
32πG. According to eq. (2.1) they are sourced

as ∂2
t ĥ

TT
ij − ∇2ĥTT

ij =
√
8πGTTT

ij . We can now directly overtake eq. (1.2) for the production

rate of gravitons, by replacing the polarization vectors accordingly. Subsequently, weighting

the production rate by the energy carried by individual quanta, we obtain

dρGW

dt d3k
=

4πG

(2π)3

∑

λ

ϵTT(λ)
ij,k ϵTT(λ)∗

mn,k

∫

X
eiK·X

〈

T ij(0)Tmn(X )
〉

. (2.4)

The sum over the polarization vectors yields

∑

λ

ϵTT(λ)
ij,k ϵTT(λ)∗

mn,k = Λij,mn ≡
1

2

(

PimPjn + PinPjm − PijPmn

)

, (2.5)

where Pij ≡ δij − kikj/k2. Choosing k = k e3 and rotating subsequently the diagonal

correlator ⟨12 (T
11 − T 22) (T 11 − T 22)⟩ into the non-diagonal one, we obtain

dρGW

dt d ln k
=

8k3

πm2
Pl

∫

X
eik(t−z)

〈

T12(0)T12(X )
〉

. (2.6)

In order to be convinced that eq. (2.4) is correct, let us repeat the analysis on a purely

classical level. Fourier transforming eq. (2.1) with respect to spatial coordinates and denoting

the retarded Green’s function related to the time evolution by∆(t, k), its time derivative reads

3
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ḣTT
ij (t,x)

]2
+

∣

∣∇hTT
ij (t,x)

∣

∣

2
}

. (2.3)

Here ⟨⟨...⟩⟩ denotes an average over an oscillation period. From eq. (2.3) canonically normal-

ized fields can be identified as ĥTT
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Hydrodynamic limit
• Field theories admit a long-wavelength hydrodynamical 

limit. Hydrodynamics: Effective Theory based on a 
gradient expansion of the flow velocity

• For hydro fluctuations with local flow velocity v around 
an equilibrium state (with temp. T), at first order in the 
gradients and in v

Navier-Stokes hydro, two transport coefficients: bulk and 
shear viscosity

T 00 = e, T 0i = (e+ p)vi

T ij = (p� ⇣r · v)�ij � ⌘

✓
@iv

j + @jv
i � 2

3
�ijr · v

◆



Hydrodynamic limit
• Fluctuation-dissipation theorem: the same microscopic 

mechanism that is responsible for dissipation of a non-
equilibrium shear stress will also cause fluctuations 
around equilibrium ⇒ the processes responsible for the 
shear viscosity will also be responsible for the emission of 
IR gravitational waves

• Dates back to the Einstein relation in Brownian motion 
(1905, in Bern): microscopic processes responsible for it 
will also cause drag

• Connection between the small k rate and η can be made 
quantitative



Hydrodynamic limit
• 4-momentum conservation for a perturbation along z: 

decoupling of v1 and v2

• Now look at the T0i correlator (operator ordering irrelevant 
in the soft limit), i’,j’={1,2}

• For small k this becomes the momentum susceptibility

Consider hydrodynamic fluctuations associated with a local flow velocity vi around an

equilibrium state at a temperature T . To first order in gradients and in vi,2 the energy-

momentum tensor has the form

T 0i = (e+ p) vi , (3.1)

T ij =
(

p− ζ∇ · v
)

δij − η
(

∂iv
j + ∂jv

i −
2

3
δij∇ · v

)

, (3.2)

where e, p, ζ, η are the energy density, pressure, bulk viscosity, and shear viscosity, respec-

tively. The equation for energy-momentum conservation asserts that ∂0T
0j + ∂iT

ij = 0 ∀j ∈
{1, 2, 3}. Let us consider a plane wave perturbation with a momentum vector k = k e3. Then

the equations of motion for the transverse velocity components (v⊥ · k = 0) decouple from

the equations relating v3 and ∂3p. The resulting system is immediately integrated to obtain

v⊥(t,k) = v⊥(0,k) e
−ηk2t/(e+p) . (3.3)

We now consider the 2-point correlator

〈1

2

{

T 0i(t,k), T 0j(0,−k)
}

〉

, (3.4)

where the operator ordering is only relevant in the quantum theory. This correlator is sym-

metric in t → −t and has a classical limit. Therefore equations (3.1) and (3.3) lead to a

hydrodynamic prediction for the transverse components (i′, j′ ∈ {1, 2}),

1

V

∫ ∞

−∞
dt eiωt

〈1

2

{

T 0i′(t,k), T 0j′(0,−k)
}

〉

=
2ηk2

e+p

ω2 + η2k4

(e+p)2

∫

x∈V
e−ik·x

〈

T 0i′(0,x)T 0j′(0,0)
〉

, (3.5)

where we returned to configuration space for the equal-time correlator.

Let us take k to be very small, and look for the leading term in this limit. In the equal-

time correlator we can send k → 0. Then it equals the susceptibility related to the total

momentum in the i′-direction:
∫

x∈V

〈

T 0i′(0,x)T 0j′(0,0)
〉

T
=

1

V

∫

x,y∈V

〈

T 0i′(0,x)T 0j′(0,y)
〉

≡ δi
′j′ χp . (3.6)

Even though the average momentum is zero, its susceptibility is non-zero, in analogy with

eq. (1.1):

χp = T (e+ p) . (3.7)

Despite including an integral over operator correlations at short distances, this exact equation

is ultraviolet finite just like eq. (1.1) (for a rigorous discussion see ref. [41]).

2Second order terms such as (e+ p)vivj are omitted.
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Even though the average momentum is zero, its susceptibility is non-zero, in analogy with

eq. (1.1):

χp = T (e+ p) . (3.7)

Despite including an integral over operator correlations at short distances, this exact equation

is ultraviolet finite just like eq. (1.1) (for a rigorous discussion see ref. [41]).

2Second order terms such as (e+ p)vivj are omitted.
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T ij =
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p− ζ∇ · v
)

δij − η
(

∂iv
j + ∂jv

i −
2

3
δij∇ · v

)

, (3.2)

where e, p, ζ, η are the energy density, pressure, bulk viscosity, and shear viscosity, respec-

tively. The equation for energy-momentum conservation asserts that ∂0T
0j + ∂iT

ij = 0 ∀j ∈
{1, 2, 3}. Let us consider a plane wave perturbation with a momentum vector k = k e3. Then

the equations of motion for the transverse velocity components (v⊥ · k = 0) decouple from

the equations relating v3 and ∂3p. The resulting system is immediately integrated to obtain
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We now consider the 2-point correlator
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Hydrodynamic limit
• Use a Ward identity to go from T0i’ to T3i’ 

• What we want (T12 ) is different but related. Since v1 and v2 
are uncoupled from the EOMS, their fluctuations are 
uncorrelated in spacetime ⇒ ω,k independent

• Setting ω=k and sending k→0 restores 3D symmetry, so 
that by comparing

Obtainable formally by linear response Hong Teaney (2010)

Now, a Ward identity related to energy-momentum conservation asserts that

ω2
〈1

2

{

T 0i′(ω,k), T 0j′(−ω,−k)
}

〉

= k2
〈1

2

{

T 3i′(ω,k), T 3j′(−ω,−k)
}

〉

. (3.8)

Therefore, eqs. (3.5)–(3.7) can be re-expressed as

∫

X
ei(ωt−kz)

〈1

2

{

T 3i′(X ), T 3j′(0)
}

〉 ω,k<∼α2T
=

2ηTω2δi
′j′

ω2 + η2k4

(e+p)2

. (3.9)

Taking limω→0 limk→0 from here yields the well-known Kubo formula for η.

Of interest to us is not the correlator of eq. (3.9) (known as the “shear channel”) but the

corresponding correlator for the spatial components transverse to k (known as the “tensor

channel”). It can be argued, however, that its functional form is closely related to that in

eq. (3.9). The tensor components also experience hydrodynamical fluctuations; but, in our

coordinate system with k = k e3, these are related to the velocity gradients ∂1v2 or ∂2v1,

cf. eq. (3.2). These components are decoupled from the equations of motion following from

energy-momentum conservation. Therefore, they are not represented by smooth differen-

tiable functions responsible for the transfer of hydrodynamic information from one point and

time to another; rather, nearby points are uncorrelated, as is the case for generic thermal

fluctuations [34]:

〈1

2

{

TTT
i′j′(t1,x1), T

TT
k′l′(t2,x2)

}

〉

= Φi′j′k′l′ δ(t1 − t2) δ
(3)(x1 − x2) . (3.10)

Consequently a Fourier transform like in eq. (3.9) is independent of ω, k. Putting finally

ω = k and sending k → 0 so that the distinction between spatial directions disappears, we

can fix the coefficient Φ through a comparison with eq. (3.9):

lim
k→0

∫

X
eik(t−z)

〈1

2

{

T12(X ), T12(0)
}

〉

= 2 η T . (3.11)

This is the main result that is needed below. We remark that, apart from the physical

arguments discussed above, the same expression can be derived more formally by a linear

response analysis related to a metric perturbation (cf. e.g. ref. [42]).

4. Estimate of shear viscosity at T > 160 GeV

Shear viscosity (η) is a macroscopic property of a plasma that originates from the microscopic

collisions that its constituents are undergoing. It is inversely proportional to a scattering

cross section and therefore large for a plasma in which there are some weakly interacting

particles. In the Standard Model above the electroweak crossover, right-handed leptons
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The shear viscosity

• Finite shear viscosity smears out flow differences (diffusion)

⌘ = 0

No friction

⌘ > 0

Friction



Estimating η: counterintuitive?

• Weak coupling: long 
distances between 
collisions, easy 
diffusion. Large η

• Strong coupling: short 
distances between 
collisions, little 
diffusion. Small η 



• Using                         and in the high-T limit (vx~1)

• u flow velocity, vx microscopical velocity of particles

Estimating η

Kinetic Theory estimate

(x) = 0

Longitudinal flow

Longitudinal flow

u

u z

z Transverse particle transfer

vx
l

l

(x+l)

(x−l)

u z
uz : Flow velocity
vx : Average speed of micro-

scopic particles

Rough estimate (fluid rest frame, or uz(x) = 0)
The momentum density: T0z = (✏+ P)u0uz diffuses in the x
direction with vx = ux/u0. Net change:

h✏+ Pi |vx |u0(uz(x � l
mfp

)� uz(x + l
mfp

))

⇡ �2 h✏+ Pi |vx | u0 l
mfp

@xuz(x)
⇠ �⌘u0@xuz

Here l
mfp

: Mean free path
Recall thermo. id.: h✏+ Pi = sT

⌘ ⇠ h✏+ Pi l
mfp

h|vx |i ⇠ s T l
mfp

h|vx |i
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x

z
• T0z=(e+P)u0uz diffuses along x with vx=ux/u0 . Net change

(e+ p)vxu0(uz(x� lmfp)� u

z(x+ lmfp) ⇡ �2(e+ p)vxu0
lmfp@xu

z(x) ⇠ �⌘u

0
@

x

u

z(x)

e+ p = sT

⌘

s
⇠ T lmfp



• (Mean free path)-1~ cross section x density

• Cross section in a perturbative gauge theory (T only scale*)

* Coulomb divergences and screening scales (mD~gT) in 
gauge theories

Estimating η

� ⇠ g4

T 2

⌘

s
⇠ 1

g4

⌘

s
⇠ T lmfp ⇠ T

n�
⇠ 1

T 2�

� ⇠ g4

T 2
ln(1/g)

⌘

s
⇠ 1

g4 ln(1/g)



• Kubo formula from linear response theory (S TT part of T)

• Not practical at weak coupling: use effective kinetic theory 
with 2↔︎2 and 1↔︎2 processes AMY (2000-2003)

• For the SM at T>160 GeV η is dominated by the slowest 
processes, those involving right-handed leptons only

g1 hypercharge coupling with screening mass
AMY (2000-2003)

Computing η

112 Linear response theory

Now BL(ω = 0,k → 0) = −B00
R (ω = 0,k → 0) = ∂2P/∂µ2

B = ∂nB/∂µB.
(The reasoning is the same as for the electric screening mass.) Further-
more,

BL(ω, |k| → 0) = k̂ik̂ j Bij
R (ω, |k| → 0) (6.151)

where k̂i = ki/|k| is a unit vector in the direction of k. Putting all this
together and using the rotational symmetry yields a linear response for-
mula for the thermal conductivity:

χT =
1
3

(
w

nB

)2

lim
ω→0

1
ω

∫
d4x eiωt

〈[
Ĵ i
B(t,x), Ĵ i

B(0,0)
]〉

θ(t) (6.152)

The factor (w/nB)2 arises in the conversion of baryon current to enthalpy
current. Alternatively, (6.152) could be written in terms of the spectral
densities for the longitudinal part of the baryon response function as

χT =
1
3

(
w

nB

)2

lim
ω→0

1
ω
ρn
L(ω, |k| = 0)

=
1

3T

(
w

nB

)2

lim
ω→0

ρ+
L (ω, |k| = 0) (6.153)

The latter equality follows from the relation ρn = (1 − e−βω)ρ+, as dis-
cussed in Section 6.2.

There are Kubo-type linear-response expressions for the viscosities too.
These may be derived in a way analogous to that for the thermal con-
ductivity since Tµν may be viewed as representing a set of four conserved
currents. One obtains

η =
1
20

lim
ω→0

1
ω

∫
d4x eiωt

〈[
Sij(t,x), Sij(0,0)

]〉
θ(t) (6.154)

ζ =
1
2

lim
ω→0

1
ω

∫
d4x eiωt⟨[P(t,x), P(0,0)]⟩θ(t) (6.155)

where P = −1
3T

i
i represents the trace of the momentum tensor (the pres-

sure in equilibrium) and Sij = T ij − δijP represents the traceless part.
These follow from the dispersion relation for the transverse part of the
momentum density,

ω = −iDSk2 (6.156)

where DS = η/w, and from the dispersion relation for pressure waves,

ω2 − v2
Pk2 + iDPωk2 = 0 (6.157)

⌘ ' 16T 3

g41 ln(5T/mD1)

k ∼ 3T

p ∼ 3T

Figure 1: Processes leading to a logarithmically enhanced graviton production rate. Wiggly lines

denote gauge bosons; arrowed lines fermions; dashed lines scalars; and a double line a graviton. By

k, p ∼ 3T we denote typical momenta of the scattering particles, whereas the filled blob indicates that

the vertical rung carries a soft spacelike momentum transfer (t ∼ −q2
⊥
∼ −g2T 2, where q⊥ · k = 0)

so that the gauge boson needs to be Hard Thermal Loop resummed.

are the most weakly interacting degrees of freedom, changing their momenta only through

reactions mediated by hypercharge gauge fields.

Omitting for the moment all particle species which equilibrate faster than right-handed

leptons, the shear viscosity can be extracted from refs. [37, 38]:

η ≃
16T 3

g41 ln(5T/mD1)
, (4.1)

where mD1 =
√

11/6 g1T is the Debye mass related to the hypercharge gauge field. Inserting

g1 ∼ 0.36 for the gauge coupling we obtain

η ≃ 400T 3 . (4.2)

We use this value for order-of-magnitude estimates below.

If we increase the temperature above 160 GeV, the hypercharge coupling g1 grows and

the weak and strong couplings g2, g3 decrease. Presumably, the top Yukawa coupling ht and

the Higgs self-coupling λ are also of a similar magnitude. In this situation the analysis of

refs. [37, 38] should be generalized to include a scalar field and a more complicated set of

reactions. Even though conceptually straightforward, implementing and solving numerically

the corresponding set of rate equations is a formidable task and beyond the scope of the

present investigation. We note, however, that the shear viscosity is likely to decrease with

increasing g1, so that eq. (4.2) should represent the most “optimistic” estimate from the point

of view of detecting a thermally emitted low-frequency gravitational wave background.

5. Leading-logarithmic production rate at large momentum

Before turning to numerical estimates we wish to complete the qualitative picture concerning

the thermal graviton production rate by considering the case of “hard momenta”, k ∼ 3T . A

full computation of the rate in this regime represents a complicated task, similar to the full
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FIG. 2. Leading-order diagrams for all 2 ↔ 2 particle scattering processes in a gauge theory with
fermions. Solid lines denote fermions and wiggly lines are gauge bosons. Time may be regarded as running
horizontally, either way, and so a diagram such as (D) represents both f f̄ → gg and gg → f f̄ . The diagrams
of the first row [(A)–(E)] contribute to the leading log transport coefficients, while the diagrams of the second
row [(F )–(J)], and all interference terms, do not.

which leads to a logarithmically IR divergent scattering cross section. However, we are not
directly interested in the total scattering cross section; we need to know the size of the
contribution to (χi···j, Cχi···j) in the channels relevant to transport coefficients. As we shall
review, these transport collision integrals can be less singular than the total scattering rate.

A. Kinematics

It is convenient to arrange the phase space integrations so that the transfer momentum is
explicitly an integration variable. This will make it easy to isolate the contribution from the
potentially dangerous small momentum exchange region. We choose to label the outgoing
particles so that any infrared singularity in (a given term of) the square of the amplitude
|M|2 occurs only when (p′−p)2 → 0.18 In the collision integral (2.24) it is convenient to
use the spatial δ function to perform the k′ integration, and to shift the p′ integration into
an integration over p′−p ≡ q. We may write the angular integrals in spherical coordinates
with q as the z axis and choose the x axis so p lies in the x-z plane. This yields

(

χi···j , Cχi···j

)

=
β3

(4π)6

ff̄hc
∑

abcd

∫ ∞

0
q2dq p2dp k2dk

∫ 1

−1
d cos θpq d cos θkq

∫ 2π

0
dφ

×
1

p k p′ k′

∣

∣

∣Mab
cd

∣

∣

∣

2
δ(p+k−p′−k′) fa

0 (p) f b
0(k) [1 ± f c

0(p
′)] [1 ± fd

0 (k′)]

×
[

χa
i···j(p) + χb

i···j(k) − χc
i···j(p

′) − χd
i···j(k

′)
]2

, (3.2)

18There is one case where this is impossible, namely, scattering between identical fermions, where the
interference term between outgoing leg assignments in diagram (C) makes a contribution to the matrix
element M2 ∝ s2/ut, which is divergent for both t → 0 and u → 0. As will be discussed shortly, this
interference does not contribute at leading-log level. Regardless, one could also put this case in the desired
form by using s = −u− t and rewriting the matrix element (squared) as (s/t) + (s/u), so that each piece is
now singular in only one momentum region. Diagram (A) apparently has the same problem; but when one
sums all gg → gg processes (only the sum is gauge invariant) one finds M2 ∝ (3 − su/t2 − st/u2 − tu/s2),
so there is no problem.

22

QCD ⌘ calc

Relevant processes

)

(F ) (G )

(E)

(J )(I)

(D)

(H )

(C)(B)(A

(⇠ 80%)

. . .

t1 t2 t3 tN

s1
s2

sM

p

k

p   k

. . . .

T =

(⇠ 20%)
Use kinetic theory

df
dt

= C2$2 + C1$2

Complication: 1 $ 2 process needs resummation (LPM effect, AMY)

Jeon (McGill) Soft Stony Brook 2013 52 / 89

(@t + v ·r
x

)f(t,x,p) = C2$2[f ] + C1$2[f ]



• Kubo formula (S TT part of T)

• Not practical at weak coupling: use effective kinetic theory 
with 2↔︎2 and 1↔︎2 processes AMY (2000-2003)

• For the SM at T>160 GeV η is dominated by the slowest 
processes, those involving right-handed leptons only

g1 hypercharge coupling with screening mass
AMY (2000-2003)

Computing η

112 Linear response theory

Now BL(ω = 0,k → 0) = −B00
R (ω = 0,k → 0) = ∂2P/∂µ2

B = ∂nB/∂µB.
(The reasoning is the same as for the electric screening mass.) Further-
more,

BL(ω, |k| → 0) = k̂ik̂ j Bij
R (ω, |k| → 0) (6.151)

where k̂i = ki/|k| is a unit vector in the direction of k. Putting all this
together and using the rotational symmetry yields a linear response for-
mula for the thermal conductivity:

χT =
1
3

(
w

nB

)2

lim
ω→0

1
ω

∫
d4x eiωt

〈[
Ĵ i
B(t,x), Ĵ i

B(0,0)
]〉

θ(t) (6.152)

The factor (w/nB)2 arises in the conversion of baryon current to enthalpy
current. Alternatively, (6.152) could be written in terms of the spectral
densities for the longitudinal part of the baryon response function as

χT =
1
3

(
w

nB

)2

lim
ω→0

1
ω
ρn
L(ω, |k| = 0)

=
1

3T

(
w

nB

)2

lim
ω→0

ρ+
L (ω, |k| = 0) (6.153)

The latter equality follows from the relation ρn = (1 − e−βω)ρ+, as dis-
cussed in Section 6.2.

There are Kubo-type linear-response expressions for the viscosities too.
These may be derived in a way analogous to that for the thermal con-
ductivity since Tµν may be viewed as representing a set of four conserved
currents. One obtains

η =
1
20

lim
ω→0

1
ω

∫
d4x eiωt

〈[
Sij(t,x), Sij(0,0)

]〉
θ(t) (6.154)

ζ =
1
2

lim
ω→0

1
ω

∫
d4x eiωt⟨[P(t,x), P(0,0)]⟩θ(t) (6.155)

where P = −1
3T

i
i represents the trace of the momentum tensor (the pres-

sure in equilibrium) and Sij = T ij − δijP represents the traceless part.
These follow from the dispersion relation for the transverse part of the
momentum density,

ω = −iDSk2 (6.156)

where DS = η/w, and from the dispersion relation for pressure waves,

ω2 − v2
Pk2 + iDPωk2 = 0 (6.157)
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Figure 1: Processes leading to a logarithmically enhanced graviton production rate. Wiggly lines

denote gauge bosons; arrowed lines fermions; dashed lines scalars; and a double line a graviton. By

k, p ∼ 3T we denote typical momenta of the scattering particles, whereas the filled blob indicates that

the vertical rung carries a soft spacelike momentum transfer (t ∼ −q2
⊥
∼ −g2T 2, where q⊥ · k = 0)

so that the gauge boson needs to be Hard Thermal Loop resummed.

are the most weakly interacting degrees of freedom, changing their momenta only through

reactions mediated by hypercharge gauge fields.

Omitting for the moment all particle species which equilibrate faster than right-handed

leptons, the shear viscosity can be extracted from refs. [37, 38]:

η ≃
16T 3

g41 ln(5T/mD1)
, (4.1)

where mD1 =
√

11/6 g1T is the Debye mass related to the hypercharge gauge field. Inserting

g1 ∼ 0.36 for the gauge coupling we obtain

η ≃ 400T 3 . (4.2)

We use this value for order-of-magnitude estimates below.

If we increase the temperature above 160 GeV, the hypercharge coupling g1 grows and

the weak and strong couplings g2, g3 decrease. Presumably, the top Yukawa coupling ht and

the Higgs self-coupling λ are also of a similar magnitude. In this situation the analysis of

refs. [37, 38] should be generalized to include a scalar field and a more complicated set of

reactions. Even though conceptually straightforward, implementing and solving numerically

the corresponding set of rate equations is a formidable task and beyond the scope of the

present investigation. We note, however, that the shear viscosity is likely to decrease with

increasing g1, so that eq. (4.2) should represent the most “optimistic” estimate from the point

of view of detecting a thermally emitted low-frequency gravitational wave background.

5. Leading-logarithmic production rate at large momentum

Before turning to numerical estimates we wish to complete the qualitative picture concerning

the thermal graviton production rate by considering the case of “hard momenta”, k ∼ 3T . A

full computation of the rate in this regime represents a complicated task, similar to the full
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Hard off−shell
Soft, spacelike, gauge boson, HTL resummed
Hard on−shell, resummed with diagrams of form

, , etc.

FIG. 6: Typical diagram needed in the leading-order evaluation of the shear viscosity in QCD. The

crosses at the left and right denote Tij (stress tensor) insertions.

Leading-order results for transport coefficients may themselves be expanded in powers
of 1/ ln(g−1). We have explicitly computed both leading and first sub-leading terms for
shear viscosity and quark diffusivity in U(1), SU(2), and SU(3) gauge theories with various
numbers of fermion fields (as well as several more terms for three flavor QCD). For QCD,
the next-to-leading log result (with the sub-leading term absorbed by suitably shifting the
scale inside the leading log) was found to be remarkably close to the full leading-order
result as long as mD/T ≤ 1. This is a much larger domain of utility than one might have
expected. For these transport coefficients, we also find that only roughly 10% errors are
made if one neglects near-collinear 1 ↔ 2 particle splitting processes, which are considerably
more difficult to analyze than 2 ↔ 2 particle scattering processes. (However, it should be
noted that some transport coefficients which we have not analyzed, such as bulk viscosity,
depend primarily on particle number-changing processes and so may be expected to depend
essentially on 1 ↔ 2 processes.)

Because the expansion in inverse powers of ln(g−1) is only asymptotic, not convergent, as
demonstrated in Appendix C, we are not able to give a unique, unambiguous prescription for
separating leading-order contributions from higher-order effects. As discussed in Appendix
C, it appears that the inverse log expansion is not Borel summable, which would imply that
no clean separation is possible. In practice, this means that any specific calculation yielding
results of leading-order accuracy will necessarily include some contributions from higher-
order effects. However, our examination of several different prescriptions for computing
leading-order results suggests that this is not a significant issue for mD <∼ 0.8T .

Our tool for studying transport coefficients has been kinetic theory, specifically the effec-
tive kinetic theory presented in our previous paper [22]. As originally shown by Jeon [20],
in the context of weakly-coupled relativistic scalar theories, it is also possible to compute
transport coefficients diagrammatically starting from the appropriate Kubo formulae involv-
ing current-current or stress-stress correlators. Such a diagrammatic approach amounts to a
complicated way to derive the appropriate linearized Boltzmann equation specialized to the
particular symmetry channel of interest. For gauge theories, this diagrammatic approach
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• Kubo formula (S TT part of T)

• Not practical at weak coupling: use effective kinetic theory 
with 2↔︎2 and 1↔︎2 processes AMY (2000-2003)

• For the SM at T>160 GeV η is dominated by the slowest 
processes, those involving right-handed leptons only

g1 hypercharge coupling with screening mass
Only a leading-log estimate, no complete LO for T>160 GeV
AMY (2000-2003)

Computing η

112 Linear response theory
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If we increase the temperature above 160 GeV, the hypercharge coupling g1 grows and

the weak and strong couplings g2, g3 decrease. Presumably, the top Yukawa coupling ht and

the Higgs self-coupling λ are also of a similar magnitude. In this situation the analysis of

refs. [37, 38] should be generalized to include a scalar field and a more complicated set of

reactions. Even though conceptually straightforward, implementing and solving numerically

the corresponding set of rate equations is a formidable task and beyond the scope of the

present investigation. We note, however, that the shear viscosity is likely to decrease with

increasing g1, so that eq. (4.2) should represent the most “optimistic” estimate from the point

of view of detecting a thermally emitted low-frequency gravitational wave background.

5. Leading-logarithmic production rate at large momentum

Before turning to numerical estimates we wish to complete the qualitative picture concerning

the thermal graviton production rate by considering the case of “hard momenta”, k ∼ 3T . A

full computation of the rate in this regime represents a complicated task, similar to the full
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Cosmological implications



Summary
• Our computations can be summarized as

with

computation of the shear viscosity when all couplings are of the same order of magnitude,

and is postponed to future work. In contrast to the shear viscosity, for hard momenta the

result is dominated by the largest couplings, in particular the strong gauge coupling. If we

restrict to logarithmically enhanced terms (cf. eq. (1.4)) then it can be shown that only the

gauge couplings (g1, g2, g3) contribute at leading order.

An elegant way to determine the logarithmically enhanced terms has been discussed in

ref. [43], sec. 4.2. Scatterings experienced by soft space-like gauge bosons, the vertical rung

in fig. 1, correspond to Landau damping, and can be represented within the Hard Thermal

Loop (HTL) effective theory [44, 45]. Computing the 2-point correlator of T12 within the

HTL theory and noting that only one of the gauge bosons attaching to the graviton vertex

can be soft at a time, yields (for q ≪ k ∼ 3T )
∫

X
eik(t−z)

〈

T12(0)T12(X )
〉

≈ fB(k)kT

∫ (Λ)

q⊥

∫ ∞

−∞

dq∥
2π

{

ρT(q∥,q)

q∥
−

ρE(q∥,q)

q∥

}

q4⊥
q2⊥ + q2∥

= fB(k)kT

∫ (Λ)

q⊥

(

1

q2⊥
−

1

q2⊥ +m2
D

)

q2⊥
2

, (5.1)

where fB is the Bose distribution; q∥ ≡ q · k/k; m2
D is a Debye mass squared; Λ indicates

that this treatment only applies to soft modes q⊥ ≪ 3T ; and ρT/E are spectral functions

corresponding to the “transverse” and “electric” polarizations, respectively. In the last step

we made use of a sum rule for the HTL-resummed gluon propagator that has been derived

in refs. [46, 47].

The integral in eq. (5.1) happens to be identical to that appearing in the context of the jet

quenching parameter q̂ in QCD [47]. Carrying it out and inserting the result into eq. (2.6),

we obtain
dρGW

dt d ln k
=

2k4TfB(k)

π2m2
Pl

{ 3
∑

i=1

dim
2
Di ln

5T

mDi

+O
(

g2T 2χ
( k

T

))

}

, (5.2)

where d1 ≡ 1, d2 ≡ 3, d3 ≡ 8; mDi is the Debye mass corresponding to the gauge group

U(1), SU(2) or SU(3), respectively; g2 ∈ {g21, g22, g23, h2t }; and the ultraviolet scale within

the logarithm has been (arbitrarily) taken over from eq. (4.1). The Debye masses read

m2
D1 = 11g21T

2/6, m2
D2 = 11g22T

2/6, and m2
D3 = 2g23T

2. Because of the largest multiplicity,

the result is dominated by the QCD contribution. We note that a similar computation for

t-channel fermion or Higgs exchange does not lead to logarithmic enhancement.

6. Embedding the result in cosmology

Combining eqs. (2.6), (3.11) and (5.2), we get

dρGW

dt d ln k
=

16k3ηT

πm2
Pl

φ
( k

T

)

. (6.1)
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Figure 2: The result from eq. (6.8), multiplied by mPl/Tmax, as a function of the present-day

frequency. The maximum of the power lies in the range k ∼ Tmax at T = Tmax, and at k ∼ T0 at

T = T0. The hydrodynamic and leading-log results correspond to the two limits shown in eq. (6.2),

with the band originating from varying η̂ = 100...400 in the hydrodynamic prediction and from varying

the constant O(1) within the range 0...10 in the leading-logarithmic result. The couplings were fixed

at a scale µ̄ = πT with T ≃ 106 GeV: g21 ≈ 0.13, g22 ≈ 0.40, g23 ≈ 1.0. For obtaining the current day

energy fraction the result needs to be multiplied by Ωrad ∼ 5× 10−5. The eLISA sensitivity peaks at

f ∼ 10−2...10−3 Hz.

This applies in a local Minkowskian frame. The function φ,

φ
( k

T

)

≃

⎧

⎪

⎨

⎪

⎩

1 , k <∼α2T

kfB(k)

8πη

3
∑

i=1

dim
2
Di

(

ln
5T

mDi

+O(1)

)

, k >∼ 3T
(6.2)

is quantitatively correct at k <∼α2T whereas at k >∼ 3T it only represents the qualitative struc-

ture (in particular the coefficient “5” inside the logarithm is but a convention, and there could

be substantial non-logarithmic contributions from h2t or from O(g)-suppressed effects like in

the case of the jet quenching parameter q̂ [47]). We would now like to re-express the result

in an expanding cosmological background, and subsequently obtain numerical estimates. As

our reference temperature we take that corresponding to the electroweak crossover in the

Standard Model, T0 ≡ 160 GeV (cf. e.g. refs. [48, 49]).
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• Take as reference temperature T0≡160 GeV (EW crossover)

• Since                           , with f GW phase space distribution

• Normalize by s4/3 to get rid of H and integrate

at initial time tmin (maximum temperature Tmax) no 
thermally produced GWs present
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=
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=
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Embedding in Hubble expansion
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H =
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=
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=

[

s(T0)

s(T )

]
1
3

, (6.3)

where H is the Hubble rate, a is the scale factor, and s(T ) is the entropy density. Combining

the two equations in eq. (6.3), the relation between time and temperature can be expressed

as
dT

dt
= −TH(T )3c2s(T ) , (6.4)

where cs is the speed of sound, c2s(T ) = p′(T )/e′(T ). The energy density carried by grav-

itational waves is of the form ρGW(t) =
∫

k
k f(t, k), where f is a phase space distribution.

Making use of the known evolution equation for f in an expanding background, the energy

density can be seen to evolve as

(∂t + 4H)ρGW(t) =

∫

k

R(T, k) , (6.5)

where R(T, k) = 32πηTφ(k/T )/m2
Pl in the notation of eq. (6.1). Given that (∂t + 3H)s = 0,

the factor 4H can be taken care of by normalizing ρGW by s4/3. Subsequently the equation

can be integrated, by assuming that at an initial time tmin (corresponding to a maximal
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Taking into account that momenta redshift as k(t) = k0 a(t0)/a(t) and expressing the mo-

mentum space integrals in terms of k0 finally yields

ΩGW(k0) ≡
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s(T0)
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1
3
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, (6.7)

where we also inserted H from eq. (6.3). If we approximate c2s ≈ 1/3; assume all thermody-

namic functions to scale with their dimension (s = ŝT 3, η = η̂T 3, e = êT 4, with ŝ, η̂, ê roughly

constants at T > T0); and consider Tmax ≫ T0, then

ΩGW(k0) ≃
24η̂√
6π3ê3

Tmax

mPl

k30
T 3
0

φ
(k0
T0

)

. (6.8)

This result is plotted in fig. 2, after a redshift of k0/T0 to a current-day frequency.

For a given mode k0, production starts at a maximal temperature when the argument of φ

is of order unity; since the entropy density roughly scales with T 3 for T > T0, this poses no
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Embedding in Hubble expansion
• Finally, redshift momenta to reference k0 at T0=160 GeV 

• Approximate form for                   and dimensional scaling

• Differential form T-independent, so integrated form (Tmax≫T0)
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ȧ

a
=

√

8πe

3

1

mPl

,
a(t)

a(t0)
=

[

s(T0)

s(T )

]
1
3

, (6.3)

where H is the Hubble rate, a is the scale factor, and s(T ) is the entropy density. Combining

the two equations in eq. (6.3), the relation between time and temperature can be expressed

as
dT

dt
= −TH(T )3c2s(T ) , (6.4)

where cs is the speed of sound, c2s(T ) = p′(T )/e′(T ). The energy density carried by grav-

itational waves is of the form ρGW(t) =
∫

k
k f(t, k), where f is a phase space distribution.

Making use of the known evolution equation for f in an expanding background, the energy

density can be seen to evolve as

(∂t + 4H)ρGW(t) =

∫

k

R(T, k) , (6.5)

where R(T, k) = 32πηTφ(k/T )/m2
Pl in the notation of eq. (6.1). Given that (∂t + 3H)s = 0,

the factor 4H can be taken care of by normalizing ρGW by s4/3. Subsequently the equation

can be integrated, by assuming that at an initial time tmin (corresponding to a maximal

temperature Tmax) there were no (thermally produced) gravitational waves present:

ρGW(t0)

s4/3(t0)
=

∫ t0

tmin

dt

∫

k

R(T, k)

s4/3(t)
=

∫ Tmax

T0

dT

∫

k

R(T, k)

TH(T )3c2s(T )s
4/3(T )

. (6.6)

Taking into account that momenta redshift as k(t) = k0 a(t0)/a(t) and expressing the mo-

mentum space integrals in terms of k0 finally yields

ΩGW(k0) ≡
1

e(T0)

dρGW

d ln k0

=
8k30s

1/3(T0)

mPl

√
6π3e(T0)

∫ Tmax

T0

dT
η(T )

c2s(T )s
1/3(T )e1/2(T )

φ
(k0
T

[ s(T )

s(T0)

]
1
3
)

, (6.7)

where we also inserted H from eq. (6.3). If we approximate c2s ≈ 1/3; assume all thermody-

namic functions to scale with their dimension (s = ŝT 3, η = η̂T 3, e = êT 4, with ŝ, η̂, ê roughly
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Figure 2: The result from eq. (6.8), multiplied by mPl/Tmax, as a function of the present-day

frequency. The maximum of the power lies in the range k ∼ Tmax at T = Tmax, and at k ∼ T0 at

T = T0. The hydrodynamic and leading-log results correspond to the two limits shown in eq. (6.2),

with the band originating from varying η̂ = 100...400 in the hydrodynamic prediction and from varying

the constant O(1) within the range 0...10 in the leading-logarithmic result. The couplings were fixed

at a scale µ̄ = πT with T ≃ 106 GeV: g21 ≈ 0.13, g22 ≈ 0.40, g23 ≈ 1.0. For obtaining the current day

energy fraction the result needs to be multiplied by Ωrad ∼ 5× 10−5. The eLISA sensitivity peaks at

f ∼ 10−2...10−3 Hz.

This applies in a local Minkowskian frame. The function φ,

φ
( k

T

)

≃

⎧

⎪

⎨

⎪

⎩

1 , k <∼α2T

kfB(k)

8πη

3
∑

i=1

dim
2
Di

(

ln
5T

mDi

+O(1)

)

, k >∼ 3T
(6.2)

is quantitatively correct at k <∼α2T whereas at k >∼ 3T it only represents the qualitative struc-

ture (in particular the coefficient “5” inside the logarithm is but a convention, and there could

be substantial non-logarithmic contributions from h2t or from O(g)-suppressed effects like in

the case of the jet quenching parameter q̂ [47]). We would now like to re-express the result

in an expanding cosmological background, and subsequently obtain numerical estimates. As

our reference temperature we take that corresponding to the electroweak crossover in the

Standard Model, T0 ≡ 160 GeV (cf. e.g. refs. [48, 49]).
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The bands for the hydrodynamic and leading-log results correspond to 
varying η=100...400 and to varying the constant O(1) within the range 0...10. 
The couplings were fixed at a scale "= #T with T ≃ 106 GeV. For obtaining the 
current day energy fraction the result needs to be multiplied by 'rad ∼ 5 × 10−5



⌦GW(k
0

) ⌘ 1

e(T
0

)

d⇢GW

d ln k
0

' 24⌘̂p
6⇡3ê3

T
max

m
Pl

k3
0

T 3

0

�
⇣k

0

T
0

⌘

10-3 100 103 106 109 1012 1015

f / Hz

10-40

10-30

10-20

10-10

100

Ω
G

W
 m

Pl
 / 

T m
ax

(T
  ) 0

hydrodynamics
leading log

Figure 2: The result from eq. (6.8), multiplied by mPl/Tmax, as a function of the present-day

frequency. The maximum of the power lies in the range k ∼ Tmax at T = Tmax, and at k ∼ T0 at

T = T0. The hydrodynamic and leading-log results correspond to the two limits shown in eq. (6.2),

with the band originating from varying η̂ = 100...400 in the hydrodynamic prediction and from varying

the constant O(1) within the range 0...10 in the leading-logarithmic result. The couplings were fixed

at a scale µ̄ = πT with T ≃ 106 GeV: g21 ≈ 0.13, g22 ≈ 0.40, g23 ≈ 1.0. For obtaining the current day

energy fraction the result needs to be multiplied by Ωrad ∼ 5× 10−5. The eLISA sensitivity peaks at

f ∼ 10−2...10−3 Hz.
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is quantitatively correct at k <∼α2T whereas at k >∼ 3T it only represents the qualitative struc-

ture (in particular the coefficient “5” inside the logarithm is but a convention, and there could

be substantial non-logarithmic contributions from h2t or from O(g)-suppressed effects like in

the case of the jet quenching parameter q̂ [47]). We would now like to re-express the result

in an expanding cosmological background, and subsequently obtain numerical estimates. As

our reference temperature we take that corresponding to the electroweak crossover in the

Standard Model, T0 ≡ 160 GeV (cf. e.g. refs. [48, 49]).
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• The peak is for k≈3.92T and redshifts at decoupling to 
kdec≈3.92Tdec(3.9/106.75)1/3~Tdec. Today f≈464 GHz, in 
the +-wave range. Amplitude determined by Tmax. 



• This microwave peak could 
be relevant for future high-
frequency experiments 
Chongqing HFGW
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Figure 2: The result from eq. (6.8), multiplied by mPl/Tmax, as a function of the present-day

frequency. The maximum of the power lies in the range k ∼ Tmax at T = Tmax, and at k ∼ T0 at

T = T0. The hydrodynamic and leading-log results correspond to the two limits shown in eq. (6.2),

with the band originating from varying η̂ = 100...400 in the hydrodynamic prediction and from varying

the constant O(1) within the range 0...10 in the leading-logarithmic result. The couplings were fixed

at a scale µ̄ = πT with T ≃ 106 GeV: g21 ≈ 0.13, g22 ≈ 0.40, g23 ≈ 1.0. For obtaining the current day

energy fraction the result needs to be multiplied by Ωrad ∼ 5× 10−5. The eLISA sensitivity peaks at
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is quantitatively correct at k <∼α2T whereas at k >∼ 3T it only represents the qualitative struc-

ture (in particular the coefficient “5” inside the logarithm is but a convention, and there could

be substantial non-logarithmic contributions from h2t or from O(g)-suppressed effects like in

the case of the jet quenching parameter q̂ [47]). We would now like to re-express the result

in an expanding cosmological background, and subsequently obtain numerical estimates. As

our reference temperature we take that corresponding to the electroweak crossover in the

Standard Model, T0 ≡ 160 GeV (cf. e.g. refs. [48, 49]).
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• In other words the thermal background continues to grow 
with k for 10+ decades after the peak eLISA frequency

• If compared to EWPT sources, this peak will eventually 
overtake their rapidly falling spectra



• The peak at k~4Tmax also implies that the total energy 
might not be so negligible

• Parametrizing our ignorance of           with two limits 
(lead-log...hydro) 

• GWs are constrained not to carry as much energy as 
one relativistic d.o.f.  
Smith Pierpaoli Kamionkowski PRL97 (2006) Henrot-Versille et 
al Class. Quant. Grav. 32 (2015)
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• At T0~160 GeV we must then require

• This can be used to constrain Tmax. For
we have Tmax≲1017...1018 GeV

• Not a stringent constraint  (reheating temperatures 
above 1016 GeV excluded in standard inflation, 
temperature close to Planck mass), but could be 
sharpened by knowing more about 

The total energy

current stage it seems challenging to reach a sensitivity below ΩGW ∼ 10−5 [56], whereas an

optimistic theoretical expectation would be

ΩGW ∼ Ωrad ×
1

100
×
( 4.5 GHz

100 GHz

)3
∼ 10−11 , (8.1)

where 1/100 corresponds to the maximally allowed fraction in gravitational waves at the

electroweak epoch when all degrees of freedom are relativistic, and 100 GHz to the frequency

associated with generic blackbody radiation. So, there is surely a long way to go till detection.

There is, however, one consideration which can already be carried out. Indeed, unlike

neutrinos, gravitational waves must not carry as much energy density as one relativistic

degree of freedom [51, 52]. This constrains the total energy density stored in them and,

given that the production rate peaks at the maximal temperature, the maximal temperature

reached. The total energy density corresponding to eq. (6.8) can be estimated as

∫

d ln k0ΩGW(k0) ≃
24η̂

π
√
6πê3

Tmax

mPlT
3
0

∫ ∞

0
dk0 k

2
0 φ

(k0
T0

)

≃
24

π
√
6πê3

(

8 . . .
η̂

3

)

Tmax

mPl

, (8.2)

where we varied φ between two limits: the factor 8 originates if we adopt the form of φ

appearing on the second line of eq. (6.2), setting the unknown constant to zero and the

couplings to values mentioned in the caption of fig. 2, whereas the factor η̂/3 originates if we

use the first line of eq. (6.2) and cut off the integral at k0 = T0:
∫ T0

0 dk0 k20 = T 3
0 /3. According

to Planck data [58] only a small fraction of a relativistic degree of freedom beyond those in

the Standard Model can be permitted, so at T0 ∼ 160 GeV we must require

24

π
√
6πê3

(

8 . . .
η̂

3

)

Tmax

mPl

≪
1

100
. (8.3)

Inserting ê ∼ 35, η̂ ∼ 400 we obtain Tmax<∼ 1017...1018 GeV. This is not a very strong

constraint,3 but the estimate could be sharpened with more knowledge about the function φ.

To summarize, a determination of the function φ, defined by eq. (6.1), beyond the leading-

logarithmic terms that we have obtained here, seems to pose an interesting problem. This

computation represents a well-defined challenge in thermal field theory, analogous to that

for the photon production rate from a QCD plasma [39, 40] or the right-handed neutrino

production rate from a Standard Model plasma [43, 59]. It is technically more challenging,

because every single particle species carries energy and momentum, and therefore we leave

the practical implementation to future works. (A somewhat related computation, but for the

off-shell kinematics k = 0, ω>∼T , has been presented in ref. [60].)

3In particular, within the standard inflationary paradigm, reheating temperatures above ∼ 1016 GeV are

considered all but excluded.
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3

)

Tmax

mPl

, (8.2)

where we varied φ between two limits: the factor 8 originates if we adopt the form of φ

appearing on the second line of eq. (6.2), setting the unknown constant to zero and the

couplings to values mentioned in the caption of fig. 2, whereas the factor η̂/3 originates if we

use the first line of eq. (6.2) and cut off the integral at k0 = T0:
∫ T0

0 dk0 k20 = T 3
0 /3. According

to Planck data [58] only a small fraction of a relativistic degree of freedom beyond those in

the Standard Model can be permitted, so at T0 ∼ 160 GeV we must require

24

π
√
6πê3

(

8 . . .
η̂

3

)

Tmax

mPl

≪
1

100
. (8.3)

Inserting ê ∼ 35, η̂ ∼ 400 we obtain Tmax<∼ 1017...1018 GeV. This is not a very strong

constraint,3 but the estimate could be sharpened with more knowledge about the function φ.

To summarize, a determination of the function φ, defined by eq. (6.1), beyond the leading-

logarithmic terms that we have obtained here, seems to pose an interesting problem. This

computation represents a well-defined challenge in thermal field theory, analogous to that

for the photon production rate from a QCD plasma [39, 40] or the right-handed neutrino

production rate from a Standard Model plasma [43, 59]. It is technically more challenging,

because every single particle species carries energy and momentum, and therefore we leave

the practical implementation to future works. (A somewhat related computation, but for the

off-shell kinematics k = 0, ω>∼T , has been presented in ref. [60].)

3In particular, within the standard inflationary paradigm, reheating temperatures above ∼ 1016 GeV are

considered all but excluded.
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Conclusions

• We have shown how to set up the determination of 
the equilibrium contribution to gravitational waves

• We have determined it at leading order in the 
infrared: it is related to the shear viscosity of the EW 
plasma, which is not small

• We have obtained a leading-log estimate for k~T, 
coming from scatterings of thermal plasma 
constituents



Conclusions
• The resulting 'GW is tiny in the eLISA window, but it peaks 

in the GHz range, where it would overtake non-equilibrium 
EWPT sources

• The best observational prospect is in future hi-freq. exps

• This thermal background is however guaranteed to be 
present and, since its production spans many decades, the 
associated total energy is not small

• This energy can be used to (weakly) constrain the highest 
temperature of the radiation epoch

• Estimates could be sharpened with a full leading-order 
calculation


