Sterile Neutrino Production in the Early Universe

Jacopo Ghiglieri, CERN

Teilchentee, ITP Heidelberg, 06.07.2017

Outline

- Introduction to right-handed sterile neutrinos
- Theory overview
- Production and washout rates for ultrarelativistic neutrinos
- Resonant production of keV-scale sterile neutrinos
- Conclusions

The $S M:(n-1) / n$ full or $1 / n$ emply?

- The SM seems to do quite well in collider experiments, no smoking mugs there yet

$$
\begin{aligned}
\mathcal{L} & =-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \\
& +i \not \subset D \psi+h_{c c} \\
& +\psi_{i} y_{i j} \psi_{j} \phi_{+h c} \\
& +\left|D_{m \phi}\right|^{2}-V(\phi)
\end{aligned}
$$

- However

Neutrino oscillations (and masses) are unexplained in vanilla SM

No mechanism for baryogenesis (more later)

No candidate for dark matter (5 x more abundant than baryonic matter)

Right-handed neutrinos

- Minimal model: add n sterile (SM gauge singlet), Majorana neutrinos coupling to the three active lepton flavours and the (conjugate) Higgs field

$$
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2} \sum_{I} \bar{N}_{I}\left(i \gamma^{\mu} \partial_{\mu}-M_{I}\right) N_{I}-\sum_{I, a}\left(\bar{N}_{I} h_{I a} \tilde{\phi} a_{L} l_{a}+\bar{L}_{a} a_{R} \tilde{\phi} h_{I a}^{*} N_{I}\right)
$$

- $h_{I a}$ (minimal) Yukawa coupling
- At $T \ll T_{\mathrm{EW}}=160 \mathrm{GeV}$: EW symmetry breaks $\tilde{\phi} \simeq(v 0)^{T} / \sqrt{2}$. $\mathcal{L}=\mathcal{L}_{\mathrm{SM}}+\frac{1}{2} \sum_{I} \bar{N}_{I}\left(i \gamma^{\mu} \partial_{\mu}-M_{I}\right) N_{I}-\sum_{I, a}\left(\bar{N}_{I} M_{D I a}^{\dagger} a_{L} \nu_{a}+\bar{\nu}_{a} a_{R} M_{D a i} N_{I}\right)$
$M_{D a i}=h_{a I}^{\dagger} v / \sqrt{2}$: Dirac mass connects left- and right-handed spinors (European color coding, sorry USA friends)
- Seesaw: when $M_{D} \ll M_{I}$ diagonalization yields
- n almost purely sterile states with masses $\sim M_{I}$
- 3 almost purely active states with masses given by the roots of the eigenvalues of $M_{D}\left(1 / M_{I}\right) M_{D}{ }^{T}$
- Gauge-invariant generation of a mass term for the lefthanded neutrinos Minkowski Gell-Mann Ramond Slansky Yanagida Glashow Mohapatra Senjanovic Possible also through scalar exchange Magg Wetterich Lazarides Shafi Mohapatra Senjanovic Schecter Valle
- In general mass and flavor bases do not coincide \Rightarrow oscillations

Baryogenesis

- Need to satisfy Sakharov's conditions
- B violation
- C and CP violation
- Deviations from thermal equilibrium

Baryogenesis

- Need to satisfy Sakharov's conditions
- B violation
- C and CP violation
- Deviations from thermal equilibrium

Feynman rules always conserve B, but sphaleron processes violate B (and conserve B-L)

- Non-perturbative solutions, in equilibrium at $T>T_{\mathrm{EW}}$, exponentially suppressed below. Decouple at $T \sim 130 \mathrm{GeV}$ D'Onofrio Rummukainen Tranberg PRL113 (2014)

Baryogenesis

- Need to satisfy Sakharov's conditions
- B violation
- C and CP violation
- Deviations from thermal equilibrium

The CKM phase violates CP
No mechanism for a deviation from equilibrium. For $m_{\mathrm{H}}=125$
GeV the electroweak transition is a crossover

- Electroweak baryogenesis not possible in vanilla SM

Lepłogenesis

- Main idea: generate L first (BSM) and then let sphalerons turn it into B
- Sphalerons provide B
- Lepton-neutrino Yukawas provide $\in P$
- Model-dependent mechanisms for equilibrium
- "Classic leptogenesis": massive ($M \gg T_{\mathrm{EW}}$) RHN

1) produced thermally $T \geqslant M(l \phi \rightarrow N)$
2) decay out of equilibrium ($N \rightarrow l \phi$) when $T \ll M$ (no inverse process) with CP violating phases, thus generating lepton imbalance Fukugita Yanagida PLB174 (1986)

Lepłogenesis

- Main idea: generate L first (BSM) and then let sphalerons turn it into B
- Sphalerons provide B
- Lepton-neutrino Yukawas provide $\in P$
- Model-dependent mechanisms for equilibrium
- "ARS leptogenesis": GeV scale RHNs

1) produced thermally at $T>T_{\mathrm{EW}} \gg M$ conserving CP
2) oscillations of N and their CP violating mixings create L_{I} for the I flavors, which can then be transformed into B in certain conditions
Akhmedov Rubakov Smirnov PRL81 (1998)

Leptogenesis

- Other scenario: vMSM. Two GeV RHNs for ARS leptogenesis, a keV one for dark matter Asaka Blanchet Shaposhnikov PLB620, PLB631 (2005)

Dark matter

- A sterile neutrino can be a good DM candidate. No gauge interactions, sufficiently long lived.
- Why keV?
- Fermionic DM cannot be arbitrarily packed together. Inferred DM density cannot exceed degenerate Fermi gas phase space density $\left(\propto M^{4}\right) \Rightarrow$ lower bound on the mass Tremaine Gunn PRL42 (1979)
- Radiative decay $\mathrm{N} \rightarrow \mathrm{v} \gamma$ creates a
 monocromatic (X-ray) line. Decay width $\propto M^{5}$. Nonobservation yields upper bound on the mass. Recent disputed hints of a 3.55 keV line observation

Dark matter

- keV-scale RHN DM would not be Cold Dark Matter. If spectrum is thermal it would be Warm Dark Matter, if not more complicated spectra. Might solve some CDM discrepancies Lovell et al 1605.031791611 .000051611 .00010
- Production would happen in the early universe from the mixing with active neutrinos.
- In the absence of a lepton asymmetry at production time, thermal production proceeds non-resonantly. Strong tension with observational bounds
Dodelson Widrow PRL72 (1994)
- If a lepton asymmetry is present, MSW-type resonant production Shi Fuller PRL82 (1999)

Theory overview

General approach

- Many theory approaches in the literature for right handed neutrino dynamics (production, leptogenesis, washout) in the early universe
- Boltzmann equations Giudice Notari Raidal Riotto Strumia...
- Closed-time path, Kadanoff-Baym equations Garny Kartavtsev Hohenegger Lindner Garbrecht Beneke Buchmüller Drewes Mendizabal Weniger...
- Operatorial approach Bödeker Laine Sangel Wormann...
- Review to appear soon Biondini et al... 1707.xxxxx

General approach

- Factor the system into "fast" and "slow" modes, and integrate out the former to obtain evolution eqs. for the latter

General approach

- Factor the system into "fast" and "slow" modes, and integrate out the former to obtain evolution eqs. for the latter
- For instance
for $130 \mathrm{GeV} \leqslant T \leqslant 10^{5} \mathrm{GeV}$, all SM interactions are in thermal equilibrium
$O(\mathrm{GeV})$ RHNs have $\sim 10^{-7}$ Yukawas: non-eq. ensemble Lepton (and baryon) densities also evolve slowly

Textbook example: thermal production

- Assume an equilibrated hot bath (QGP, early universe) with its internal coupling g and a particle ϕ, weakly coupled (coupling h) to other d.o.f.s, so that ϕ is not in equilibrium

$$
\mathcal{L}=\mathcal{L}_{\phi}+h \phi^{*} J+h^{*} J^{*} \phi+\mathcal{L}_{\text {bath }}
$$

J built of bath operators

- With a simple derivation one obtains that the rate (per unit volume) is proportional to a thermal average of a JJ correlator

$$
\frac{d \Gamma_{\phi}}{d^{3} k}=\frac{|h|^{2}}{2 E_{k}} \Pi^{<}(k)=\frac{|h|^{2}}{2 E_{k}} \int d^{4} X e^{i K \cdot X} \operatorname{Tr} \rho_{\text {bath }} J(0) J(x)
$$

- The expression is LO in h but to all orders in g

In this talk

- Computing reliably the lepton asymmetry in a specific scenario is usually challenging (CP violation, oscillations, plasma physics)
- On the other hand, establishing
- the production rate of RHNs
- whether an existing asymmetry gets washed out allows to put constraints (or rule out) scenarios
- In this talk: the production and washout rates for GeV scale RHNs (ARS leptogenesis) and for keV scale DM RHNs in the resonant case

General structure of the evolution equations

- By applying the slow-fast factorization to this case one can obtain coupled equations for the right-handed phase space distribution and the lepton asymmetry

$$
\left\{\begin{aligned}
\dot{f}_{I \mathbf{k}} & =\gamma_{I \mathbf{k}}\left(n_{\mathrm{F}}\left(E_{I}\right)-f_{I \mathbf{k}}\right) \\
\dot{n}_{a} & =-\gamma_{a b} n_{b}
\end{aligned}\right.
$$

- The equilibration and washout rates are related to the spectral function of the SM current $j_{a}=\tilde{\phi}^{\dagger} a_{L} l_{a}$
- Detailed derivation and structure, accounting for helicity and flavor effects, in JG Laine JHEP1705 (2017)

GeV-scale production and washout rates

- Three relevant scales: M, T and $T_{\mathrm{EW}} \sim 160 \mathrm{GeV}$
- For $M \sim \mathrm{GeV} \pi T \gg M$ down to $\sim 5 \mathrm{GeV}$
- Previous calculations in the symmetric phase for all kinematic ranges
$\mathrm{M}>\pi T$: Salvio Lodone Strumia (2011), Laine Schröder (2012), Biondini Brambilla Escobedo Vairo (2012), $\mathrm{M} \lesssim \pi T$: Garbrecht Glowna Herranen (2013), Laine (2013), Anisimov Besak Bödeker (2010-12), Ghisoiu Laine (2014)
- In this talk $\pi T \gg M$ in the broken phase (new) and in the symmetric phase JG Laine JCAP1607 (2016)

The rates in detail

$$
\begin{aligned}
\Pi_{\mathrm{E}}(K) & \equiv \operatorname{Tr}\left\{i \mathbb{K} \int_{0}^{1 / T} \mathrm{~d} \tau \int_{\mathbf{x}} e^{i K \cdot X}\left\langle\left(\tilde{\phi}^{\dagger} a_{L} l\right)(X)\left(\bar{l} a_{R} \tilde{\phi}\right)(0)\right\rangle_{T}\right\} \\
\rho(K) & \equiv \operatorname{Im} \Pi_{\mathrm{E}}(K)| |_{k_{n} \rightarrow-i\left(k_{0}+i \epsilon\right)}
\end{aligned}
$$

- RHN equilibration rate

$$
\begin{aligned}
& \dot{f}_{I \mathrm{k}}=\gamma_{I \mathrm{k}}\left(n_{\mathrm{F}}\left(E_{I}\right)-f_{I \mathbf{k}}\right)+\mathcal{O}\left[\left(n_{\mathrm{F}}-f_{I \mathbf{k}}\right)^{2}, n_{a}^{2}\right] \\
& \gamma_{I \mathrm{k}}=\sum_{a} \frac{\left|h_{I a}\right|^{2} \rho(K)}{E_{I}}+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

Approach to equilibrium of the RHN phase space distribution (on-shell RHNs, $\left.E_{I}=\left(\mathbf{k}^{2}+M^{2}\right)^{1 / 2}\right)$ Bödeker Sangel Wörmann PRD93 (2015)

The rates in detail

$$
\begin{aligned}
\Pi_{\mathrm{E}}(K) & \equiv \operatorname{Tr}\left\{i \not K \int_{0}^{1 / T} \mathrm{~d} \tau \int_{\mathbf{x}} e^{i K \cdot X}\left\langle\left(\tilde{\phi}^{\dagger} a_{L} l\right)(X)\left(\bar{l} a_{R} \tilde{\phi}\right)(0)\right\rangle_{T}\right\} \\
\rho(K) & \left.\equiv \operatorname{Im} \Pi_{\mathrm{E}}(K)\right|_{k_{n} \rightarrow-i\left(k_{0}+i \epsilon\right)}
\end{aligned}
$$

- Washout rate for the lepton number for flavour a

$$
\begin{aligned}
\dot{n}_{a} & =-\gamma_{a b} n_{b}+\mathcal{O}\left[n_{a}\left(n_{\mathrm{F}}-f_{I \mathbf{k}}\right), n_{a}^{3}\right] \\
\gamma_{a b} & =-\sum_{I} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{2 n_{\mathrm{F}}^{\prime}\left(E_{I}\right)\left|h_{I a}\right|^{2} \rho(K)}{E_{I}} \Xi_{a b}^{-1}+\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

Depends on the susceptibility $\Xi_{a b}=\partial n_{a} /\left.\partial \mu_{b}\right|_{\mu_{b}=0}$ not diagonal because of charge neutrality constraints Bödeker Laine JCAP05 (2014)

Computing ρ

- In the broken phase the Higgs e.v. $v>0$. We consider the parametric range $T \geqslant v$, so that thermal masses $(O(g T))$ and Higgs mechanism masses $(O(g v))$ are of the same order. In practice

$$
30 \mathrm{GeV} \lesssim T \lesssim 160 \mathrm{GeV}
$$

where $g=\left(g_{1}, g_{2}, h_{t}, \lambda^{1 / 2}\right)$ (parametrically equivalent)

- In this region $M_{I} \leqslant g T$
- We also consider $m_{W} \approx \pi T$ to cover the low-temperature region down to 5 GeV

$$
\Pi_{\mathrm{E}}(K) \equiv \operatorname{Tr}\left\{i \not K K \int_{0}^{1 / T} \mathrm{~d} \tau \int_{\mathbf{x}} e^{i K \cdot X}\left\langle\left(\tilde{\phi}^{\dagger} a_{L} l\right)(X)\left(\bar{l} a_{R} \tilde{\phi}\right)(0)\right\rangle_{T}\right\}
$$

- The Higgs doublet can be a propagating d.o.f. (Higgs or Goldstone) or an expectation value insertion. Distinction into direct and indirect processes

	Direct		Indirect	
$1 \leftrightarrow 2$	$\cdots<$			
	and others, and crossings			
$2 \leftrightarrow 2$	and others, and crossings			
	and others, and crossings	and others, and crossings		

- Only the sum is gauge invariant. Feynman R_{ξ} gauge simplest
- Direct processes give $\varrho \sim g^{2} T^{2}$. Indirect processes can have a near-resonant enhancement (hold on)

Direct $1 \leftrightarrow 2$ processes

- Since all masses are $O(g T)$, tree level processes (if possible) are $\sim m^{2} \sim g^{2} T^{2}$ and collinear
- Long formation times $\left.O\left(1 / g^{2} T\right)\right)$ imply that soft scatterings, at rate $g^{2} T$, need to be resummed to all orders \Rightarrow Landau-Pomeranchuk-Migdal (LPM) effect Long QCD history (BDMPS, AMY). Introduced for RHNs in the symmetric phase in Anisimov Besak Bödeker JCAP03 (2011), Besak Bödeker JCAP03 (2012), Ghisoiu Laine JCAP12 (2014)

Symmetric phase LPM

- In the symmetric phase

$$
\begin{aligned}
\rho(K)^{\mathrm{LPM}} & =\frac{1}{16 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega\left[1-n_{\mathrm{F}}(\omega)+n_{\mathrm{B}}\left(k_{0}-\omega\right)\right] \frac{k_{0}}{k_{0}-\omega} \\
& \times \lim _{\mathbf{y} \rightarrow \mathbf{0}} 4\left\{\frac{M^{2}}{k_{0}^{2}} \operatorname{Im}[g(\mathbf{y})]+\frac{1}{\omega^{2}} \operatorname{Im}\left[\nabla_{\perp} \cdot \mathbf{f}(\mathbf{y})\right]\right\}
\end{aligned}
$$

- The functions \mathbf{f} and g encode the resummed soft interactions through

$$
\begin{array}{r}
\hat{H} \equiv-\frac{M^{2}}{2 k_{0}}+\frac{m_{l}^{2}-\nabla_{\perp}^{2}}{2 \omega}+\frac{m_{\phi}^{2}-\nabla_{\perp}^{2}}{2\left(k_{0}-\omega\right)}-i \Gamma(y) \\
\left(\hat{H}+i 0^{+}\right) g(\mathbf{y})=\delta^{(2)}(\mathbf{y}), \quad\left(\hat{H}+i 0^{+}\right) \mathbf{f}(\mathbf{y})=-\nabla_{\perp} \delta^{(2)}(\mathbf{y})
\end{array}
$$

where m_{l} and m_{ϕ} are the thermal masses of leptons and scalars and the soft interactions are ($m_{\mathrm{E} i}$ screening masses)

$$
\Gamma(y)=\frac{T}{8 \pi} \sum_{i=1}^{2} d_{i} g_{i}^{2}\left[\ln \left(\frac{m_{\mathrm{E}} y}{2}\right)+\gamma_{\mathrm{E}}+K_{0}\left(m_{\mathrm{E} i} y\right)\right]
$$

Symmetric phase LPM

- In QCD (photon/dilepton production)

$$
\begin{aligned}
\rho(K)^{\mathrm{LPM}} & =\frac{N_{c}}{\pi} \int_{-\infty}^{\infty} \mathrm{d} \omega\left[1-n_{\mathrm{F}}(\omega)-n_{\mathrm{F}}\left(k_{0}-\omega\right)\right] \\
& \times \lim _{\mathbf{y} \rightarrow \mathbf{0}}\left\{\frac{M^{2}}{k_{0}^{2}} \operatorname{Im}[g(\mathbf{y})]+\left(\frac{1}{2 \omega^{2}}+\frac{1}{2\left(k_{0}-\omega\right)^{2}}\right) \operatorname{Im}\left[\nabla_{\perp} \cdot \mathbf{f}(\mathbf{y})\right]\right\}
\end{aligned}
$$

- The functions \mathbf{f} and g encode the resummed soft interactions through

$$
\begin{aligned}
& \text { rrough } \quad \hat{H} \equiv-\frac{M^{2}}{2 k_{0}}+\frac{m_{q}^{2}-\nabla_{\perp}^{2}}{2 \omega}+\frac{m_{q}^{2}-\nabla_{\perp}^{2}}{2\left(k_{0}-\omega\right)}-i \Gamma(y) \\
& \left(\hat{H}+i 0^{+}\right) g(\mathbf{y})=\delta^{(2)}(\mathbf{y}), \quad\left(\hat{H}+i 0^{+}\right) \mathbf{f}(\mathbf{y})=-\nabla_{\perp} \delta^{(2)}(\mathbf{y})
\end{aligned}
$$

where m_{q} is the thermal mass of quarks and the soft interactions are ($m_{\mathrm{D}} \mathrm{SU}(3)$ screening mass)

$$
\Gamma(y)=\frac{g^{2} C_{F} T}{2 \pi}\left[\ln \left(\frac{m_{D} y}{2}\right)+\gamma_{E}+K_{0}\left(m_{D} y\right)\right]
$$

The soft interactions

BDMPS-Z, Wiedemann, Casalderrey-Solana Salgado, D'Eramo Liu Rajagopal, Benzke Brambilla Escobedo Vairo

- All points at spacelike or lightlike separation, only preexisting correlations
- Soft contribution becomes Euclidean! Caron-Huot PRD79 (2008)
- Can be "easily" computed in perturbation theory
- Possible lattice QCD measurements Laine Rothkopf JHEP1307 (2013) Panero Rummukainen Schäfer PRL112 (2014)

Euclideanization of light-cone soft physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\int_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

Euclideanization of light-cone soft physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\sum_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)$

Euclideanization of light-cone soft

physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\int_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$

$$
G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)
$$

- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$

Euclideanization of light-cone soft

physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\sum_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)$
- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$
- Retarded functions are analytical in the upper plane in any timelike or lightlike variable $=>G_{R}$ analytical in p^{0}
$G_{r r}(t, \mathbf{x})=T \sum_{n} \int d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)} G_{E}\left(\omega_{n}, p_{\perp}, p^{z}+i \omega_{n} t / x^{z}\right)$

Euclideanization of light-cone soft

physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\int_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)$
- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$
- Retarded functions are analytical in the upper plane in any timelike or lightlike variable $=>G_{R}$ analytical in p^{0}
$G_{r r}(t, \mathbf{x})=T \sum_{n} \int d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)} G_{E}\left(\omega_{n}, p_{\perp}, p^{z}+i \omega_{n} t / x^{z}\right)$
- Soft physics dominated by $n=0$ (and t-independent)
$=>E Q C D!$
Caron-Huot PRD79 (2009)

Euclideanization of light-cone soft

physics

- For $t / x_{z}=0$: equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\sum_{p} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Consider the more general case $\left|t / x^{z}\right|<1$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d p^{z} d^{2} p_{\perp} e^{i\left(p^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}-p^{0} x^{0}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}(P)-G_{A}(P)\right)$
- Change variables to $\tilde{p}^{z}=p^{z}-p^{0}\left(t / x^{z}\right)$
$G_{r r}(t, \mathbf{x})=\int d p^{0} d \tilde{p}^{z} d^{2} p_{\perp} e^{i\left(\tilde{p}^{z} x^{z}+\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}\right)}\left(\frac{1}{2}+n_{\mathrm{B}}\left(p^{0}\right)\right)\left(G_{R}\left(p^{0}, \mathbf{p}_{\perp}, \tilde{p}^{z}+\left(t / x^{z}\right) p^{0}\right)-G_{A}\right)$
- Retarded functions are analytical in the upper plane in any timelike or lightlike variable $=>G_{R}$ analytical in p^{0}

$$
G_{r r}(t, \mathbf{x})_{\mathrm{soft}}=T \int d^{3} p e^{i \mathbf{p} \cdot \mathbf{x}} G_{E}\left(\omega_{n}=0, \mathbf{p}\right)
$$

- Soft physics dominated by $n=0$ (and t-independent)
$=>E Q C D!$
Caron-Huot PRD79 (2009)

Euclideanization of light-cone soft

 physics

- At leading order

$$
\Gamma(y) \propto T \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}}\left(1-e^{i x_{\perp} \cdot q_{\perp}}\right) G_{E}^{++}\left(\omega_{n}=0, q_{z}=0, q_{\perp}\right)=T \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}}\left(1-e^{i x_{\perp} \cdot q_{\perp}}\right)\left(\frac{1}{q_{\perp}^{2}}-\frac{1}{q_{\perp}^{2}+m_{D}^{2}}\right)
$$

- Agrees with the earlier sum rule in Aurenche Gelis Zaraket JHEP0205 (2002)

Symmetric phase LPM

- In the symmetric phase

$$
\begin{aligned}
\rho(K)^{\mathrm{LPM}} & =\frac{1}{16 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega\left[1-n_{\mathrm{F}}(\omega)+n_{\mathrm{B}}\left(k_{0}-\omega\right)\right] \frac{k_{0}}{k_{0}-\omega} \\
& \times \lim _{\mathbf{y} \rightarrow \mathbf{0}} 4\left\{\frac{M^{2}}{k_{0}^{2}} \operatorname{Im}[g(\mathbf{y})]+\frac{1}{\omega^{2}} \operatorname{Im}\left[\nabla_{\perp} \cdot \mathbf{f}(\mathbf{y})\right]\right\}
\end{aligned}
$$

- The functions \mathbf{f} and g encode the resummed soft interactions through

$$
\begin{array}{r}
\hat{H} \equiv-\frac{M^{2}}{2 k_{0}}+\frac{m_{l}^{2}-\nabla_{\perp}^{2}}{2 \omega}+\frac{m_{\phi}^{2}-\nabla_{\perp}^{2}}{2\left(k_{0}-\omega\right)}-i \Gamma(y) \\
\left(\hat{H}+i 0^{+}\right) g(\mathbf{y})=\delta^{(2)}(\mathbf{y}), \quad\left(\hat{H}+i 0^{+}\right) \mathbf{f}(\mathbf{y})=-\nabla_{\perp} \delta^{(2)}(\mathbf{y})
\end{array}
$$

where m_{l} and m_{ϕ} are the thermal masses of leptons and scalars and the soft interactions are ($m_{\mathrm{E} i}$ screening masses)

$$
\Gamma(y)=\frac{T}{8 \pi} \sum_{i=1}^{2} d_{i} g_{i}^{2}\left[\ln \left(\frac{m_{\mathrm{E}} y}{2}\right)+\gamma_{\mathrm{E}}+K_{0}\left(m_{\mathrm{E} i} y\right)\right]
$$

Broken phase LPM

$$
\begin{aligned}
\rho(K)^{\mathrm{LPM}} & =\frac{1}{16 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega\left[1-n_{\mathrm{F}}(\omega)+n_{\mathrm{B}}\left(k_{0}-\omega\right)\right] \frac{k_{0}}{k_{0}-\omega} \\
& \times \lim _{\mathbf{y} \rightarrow \mathbf{0}} 4\left\{\frac{M^{2}}{k_{0}^{2}} \operatorname{Im}[g(\mathbf{y})]+\frac{1}{\omega^{2}} \operatorname{Im}\left[\nabla_{\perp} \cdot \mathbf{f}(\mathbf{y})\right]\right\}
\end{aligned}
$$

- Broken electroweak symmetry implies
- Broken degeneracy of scalar masses $m_{\phi}^{2} \rightarrow \operatorname{diag}\left(m_{क_{o}}^{2}, m_{क_{p}}^{2}, m_{\phi_{\phi}}^{2}\right)$
- Soft interactions become sensitive to "vacuum" masses and to the electromagnetic charges

Broken phase LPM

$$
\begin{aligned}
\rho(K)^{\mathrm{LPM}} & =\frac{1}{16 \pi} \int_{-\infty}^{\infty} \mathrm{d} \omega\left[1-n_{\mathrm{F}}(\omega)+n_{\mathrm{B}}\left(k_{0}-\omega\right)\right] \frac{k_{0}}{k_{0}-\omega} \\
& \times \lim _{\mathbf{y} \rightarrow \mathbf{0}} \sum_{\mu=0}^{3}\left\{\frac{M^{2}}{k_{0}^{2}} \operatorname{Im}\left[g_{\mu}(\mathbf{y})\right]+\frac{1}{\omega^{2}} \operatorname{Im}\left[\nabla_{\perp} \cdot \mathbf{f}_{\mu}(\mathbf{y})\right]\right\}
\end{aligned}
$$

- Broken electroweak symmetry implies
- Broken degeneracy of scalar masses $m_{\phi}^{2} \rightarrow \operatorname{diag}\left(m_{क_{0}}^{2}, m_{क_{s}}^{2}, m_{\phi_{p}}^{2}\right)$
- Soft interactions become sensitive to "vacuum" masses and to the electromagnetic charges
\Rightarrow Matrix structure between the $v \phi_{0}, v \phi_{3}$ and $e \phi_{ \pm}$states

$$
\Gamma_{3 \times 3}=\left(\begin{array}{ccl}
2 \Gamma_{W}(0)+\Gamma_{Z}(0) & -\Gamma_{Z}(y) & -2 \Gamma_{W}(y) \\
-\Gamma_{Z}(y) & 2 \Gamma_{W}(0)+\Gamma_{Z}(0) & -2 \Gamma_{W}(y) \\
-\Gamma_{W}(y) & -\Gamma_{W}(y) & 2 \Gamma_{W}(0)+\Gamma_{Z^{\prime}}(0)-\Gamma_{Z^{\prime}}(y)
\end{array}\right)
$$

Direct $1 \leftrightarrow 2$ processes

- Red: tree level processes with collinear ($m \ll T$) approx. Unphysical growth at low T
- Blue: full tree level with $m_{l}=0$, proper m_{ϕ}, accurate at low T
- Black: full solution of the LPM equations at high T, manually switched to blue at low T. Final $\mathbf{1} \leftrightarrow \mathbf{2}$ result

Direct $2 \leftrightarrow 2$ processes

- As long as all external state masses are $O(g T)$ or $O(g v)$ they can be neglected at leading order $\left(O\left(g^{2} T^{2}\right)\right)$. Hence, no change with respect to the symmetric phase evaluation in Besak Bödeker JCAP03 (2012)

$$
\int_{\text {ph. space }} f(p) f\left(p^{\prime}\right)\left(1 \pm f\left(k^{\prime}\right)\right)|\mathcal{M}|^{2} \delta^{4}\left(P+P^{\prime}-K-K^{\prime}\right)
$$

- Phase space convolution of statistical functions and matrix elements. HTL resummation needed for soft fermion exchange. Analiticity arguments lead to a simple form for the soft part of the result Besak Bödeker JCAP03 (2012) JG Hong Lu Kurkela Moore Teaney JHEP05 (2013)

Direct $2 \leftrightarrow 2$ processes

- As long as all external state masses are $O(g T)$ or $O(g v)$ they can be neglected at leading order $\left(O\left(g^{2} T^{2}\right)\right)$. Hence, no change with respect to the symmetric phase evaluation in Besak Bödeker JCAP03 (2012)
- At low $T<m_{W}$ initial state bosons (scalar or gauge) are very massive. We switch off the rate at low T by multiplying it for the W boson susceptibility
- The formally leading-order contribution at low T is scalarmediated scatterings off b quarks. We find it is however negligible

Direct $2 \leftrightarrow 2$ processes

Indirect processes

\{

- In the indirect case ρ is directly proportional to the spf of active neutrinos, i.e.

$$
\rho(K)^{\text {indir. }}=\frac{v^{2}}{2} \frac{M^{2} 2 K \cdot \operatorname{Im} \Sigma}{\left(M^{2}+2 K \cdot \operatorname{Re} \Sigma\right)^{2}+4(K \cdot \operatorname{Im} \Sigma)^{2}}
$$

- Real part of the active neutrino self- energy
- At high $T 2 K \cdot \operatorname{Re} \Sigma=-m_{l}^{2} \sim g^{2} T^{2}$
- At low T (positive) matter potential
- (Broad) resonance

Indirect processes

- In the indirect case ρ is directly proportional to the spf of active neutrinos, i.e.

$$
\rho(K)^{\text {indir. }}=\frac{v^{2}}{2} \frac{M^{2} 2 K \cdot \operatorname{Im} \Sigma}{\left(M^{2}+2 K \cdot \operatorname{Re} \Sigma\right)^{2}+4(K \cdot \operatorname{Im} \Sigma)^{2}}
$$

Indirect processes

,

- In the indirect case ρ is directly proportional to the spf of active neutrinos, i.e.

$$
\rho(K)^{\text {indir. }}=\frac{v^{2}}{2} \frac{M^{2} 2 K \cdot \operatorname{Im} \Sigma}{\left(M^{2}+2 K \cdot \operatorname{Re} \Sigma\right)^{2}+4(K \cdot \operatorname{Im} \Sigma)^{2}}
$$

- Imaginay part of the active neutrino self- energy: active neutrino width $2 K \cdot \operatorname{Im} \Sigma=k_{0} \Gamma$
- At high T dominated by soft $2 \leftrightarrow 2$ scatterings. $\Gamma \sim g^{2} T$ and thus (for $M \sim g T$) $\rho \sim v^{2}$
- At low T dominated by $1 \leftrightarrow 2$ decays of gauge bosons

Indirect processes

$\xi_{-,}^{\infty}=$

- In the indirect case ρ is directly proportional to the spf of active neutrinos, i.e.

$$
\rho(K)^{\text {indir. }}=\frac{v^{2}}{2} \frac{M^{2} 2 K \cdot \operatorname{Im} \Sigma}{\left(M^{2}+2 K \cdot \operatorname{Re} \Sigma\right)^{2}+4(K \cdot \operatorname{Im} \Sigma)^{2}}
$$

- Real part of the active neutrino self- energy
- Imaginary part of the active self energy
- Medium-modified mixing angle squared

$$
\theta_{\mathrm{med}}^{2}=\frac{v^{2}}{2} \frac{M^{2}}{\left(M^{2}+2 K \cdot \operatorname{Re} \Sigma\right)^{2}+4(K \cdot \operatorname{Im} \Sigma)^{2}}
$$

Indirect $2 \leftrightarrow 2$ processes

- Naively $\Gamma \sim g^{4} T$, but soft $(Q \sim g T) t$-channel gauge boson scatterings have a large enhancement. Need to resum the "vacuum" masses and Hard Thermal Loops
- Euclideanization (Caron-Huot PRD82 (2008)) still applicable. In the W exchange case
$\Gamma_{W}^{\text {soft }}=\frac{g_{2}^{2} T}{4 \pi} \int_{0}^{\infty} d q_{\perp} q_{\perp}\left[\frac{1}{q_{\perp}^{2}+m_{W}^{2}}-\frac{1}{q_{\perp}^{2}+m_{W}^{2}+m_{E 2}^{2}}\right]$
transverse Euclidean propagator (vacuum mass only) longitudinal propagator (vacuum and $S U(2)$ screening mass)
- Z exchange more complicated (mixing of $\mathrm{SU}(2)_{\mathrm{L}}$ and $\left.\mathrm{U}(1)_{\mathrm{Y}}\right)$ but conceptually the same

Indirect $2 \leftrightarrow 2$ processes

$$
\Gamma_{W}^{\mathrm{soft}}=\frac{g_{2}^{2} T}{4 \pi} \int_{0}^{\infty} d q_{\perp} q_{\perp}\left[\frac{1}{q_{\perp}^{2}+m_{W}^{2}}-\frac{1}{q_{\perp}^{2}+m_{W}^{2}+m_{E 2}^{2}}\right]
$$

- At low T these approximations are inaccurate, they don't go into the Fermi limit
- We replace them with the Fermi limit results from Asaka Laine Shaposhnikov JHEP01 (2007) (in a more compact form, as the masses of all scatterers are negligible for $T>5$ GeV)

Indirect $1 \leftrightarrow 2$ processes

- At high T they are very similar to the direct $1 \leftrightarrow 2$ processes, with the scalar replaced by a gauge boson and the coupling $h \rightarrow g$. Hence $k_{0} \Gamma \sim g^{2} m^{2} \sim g^{4} T^{2}$ and thus negligible w.r.t. the indirect $2 \leftrightarrow 2$ processes
- At low \boldsymbol{T} the LPM effect becomes negligible. The Born-level decays of gauge bosons into leptons $k_{0} \Gamma \sim g^{2} m^{2}$ become the leading contribution, also w.r.t the indirect $2 \leftrightarrow 2$ processes

Indirect processes

- Soft $2 \leftrightarrow 2$ scatterings, leading at high T
- $2 \leftrightarrow 2$ scatterings in the Fermi limit, accurate but subleading at low T
- Born $1 \leftrightarrow 2$ rate, leading at low T, inaccurate but negligible at high T
- Total: $1 \leftrightarrow 2+$ the appropriate (smallest) $2 \leftrightarrow 2$

Results

- Indirect processes rapidly dominate and peak at low T (in our 1-loop parameter fixing $T_{\mathrm{EW}} \approx 150 \mathrm{GeV}$)

Results

- Spectra available for download at

 http://www.laine.itp.unibe.ch/production-midT/

Cosmological implications

- Compare the equilibration and washout rates to the Hubble rate

$$
\begin{array}{lr}
\gamma_{I \mathrm{k}}=\sum_{a} \frac{\left|h_{I a}\right|^{2} \rho(K)}{E_{I}} & H=\sqrt{\frac{8 \pi e}{3 m_{\mathrm{Pl}}^{2}}} \\
\gamma_{a b}=-\sum_{I} \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{2 n_{\mathrm{F}}^{\prime}\left(E_{I}\right)\left|h_{I a}\right|^{2} \rho(K)}{E_{I}} \Xi_{a b}^{-1} &
\end{array}
$$

- Fix the RHNs Yukawa couplings in a seesaw scenario with hierarchical neutrinos, with only one Yukawa coupling contributing to a given mass difference $|\Delta m|=\left|h_{I a}\right|^{2} v^{2} /(2 M)$

Cosmological implications

- Leptogenesis possible because no equilibrium at $\mathrm{T} \approx 130 \mathrm{GeV}$
- Resonant generation of keV scale RHNs hindered by washout at $\mathrm{T} \leq 30 \mathrm{GeV}$. Fine-tuned windows still possible. Helicity could also play a role Eijima Shaposhnikov PLB771 (2017)

Resonant sterile neutrino production

- If somehow a significant lepton asymmetry survive, how large does it need to be to account for DM abundance? And how large should the mixing angles be?
- To answer these questions, derive and solve the coupled equations Laine Shaposhnikov (2008), JG Laine (2015)

$$
\begin{aligned}
& \dot{f}_{k}=\frac{1}{2} \sum_{a}\left\{\left[n_{\mathrm{F}}\left(E_{1}+\mu_{a}\right)-f_{k}\right] R_{a}^{-}(k)+\left[n_{\mathfrak{F}}\left(E_{1}-\mu_{a}\right)-f_{k}\right] R_{a}^{+}(k)\right\}, \\
& \dot{n}_{a}=\int_{\mathbf{k}}\left\{\left[n_{\mathrm{F}}\left(E_{1}+\mu_{a}\right)-f_{k}\right] R_{a}^{-}(k)-\left[n_{\mathrm{F}}\left(E_{1}-\mu_{a}\right)-f_{k}\right] R_{a}^{+}(k)\right\}
\end{aligned}
$$

Mixing rates for interactions with leptons and antileptons in the presence of asymmetry

$$
R_{a}^{ \pm}(k) \equiv \frac{\left|h_{1 a}\right|^{2} \operatorname{Tr}\left[\mathcal{K} \rho_{a a}(\pm \mathcal{K}) a_{\mathrm{R}}\right]}{E_{1}}
$$

Resonant sterile neutrino production

- Mixing rates for interactions with leptons and antileptons in the presence of asymmetry

$$
R_{a}^{-}(k) \approx \frac{\mid M_{\mathrm{D}} 1_{1 a}^{2} M_{1}^{2} \Gamma}{\left[M_{1}^{2}+2 E_{1}(b+c)+(b+c)^{2}\right]^{2}+E_{1}^{2} \Gamma^{2}}, \quad R_{a}^{+}(k)=\left.R_{a}^{-}(k)\right|_{c \rightarrow-c} .
$$

- Active neutrino width from Fermi-type processes. For small asymmetry μ-independent
- For small asymmetry matter potential b is μ-independent
- For small asymmetry matter potential c is linear in μ and causes resonance

$$
\begin{aligned}
c=\sqrt{2} G_{\mathrm{F}} & {\left[2 n_{\nu_{a}}+\sum_{b \neq a} n_{\nu_{b}}+\left(\frac{1}{2}+2 \sin ^{2} \theta_{w}\right) n_{e_{a}}-\left(\frac{1}{2}-2 \sin ^{2} \theta_{w}\right) \sum_{b \neq a} n_{e_{b}}\right.} \\
& \left.+\left(\frac{1}{2}-\frac{4}{3} \sin ^{2} \theta_{w}\right) \sum_{i=u, c} n_{i}-\left(\frac{1}{2}-\frac{2}{3} \sin ^{2} \theta_{w}\right) \sum_{i=d, s, b} n_{i}\right],
\end{aligned}
$$

Resonant sterile neutrino production

- Solve numerically the coupled equations (with Hubble expansion and QCD transition) from $T=5 \mathrm{GeV}$ down to $T_{*}=1 \mathrm{MeV}$. Very narrow resonance, numerically tricky.
JG Laine JHEP1511 (2015)

$$
k_{T} \equiv k_{*}\left[\frac{s(T)}{s\left(T_{*}\right)}\right]^{1 / 3}
$$

- Two resonances in most of the range. The second one, approximately at the QCD transition, is the strongest
 only $n_{\nu_{e}} \neq 0$ at $T=T_{\max } ;$ only $h_{1 e} \neq 0$; non-equilibrated active flavours.

Resonant sterile neutrino production

- Solve numerically the coupled equations (with Hubble expansion and QCD transition) from $T=5 \mathrm{GeV}$ down to $T^{*}=1 \mathrm{MeV}$. Very narrow resonance, numerically tricky.
JG Laine JHEP1511 (2015)

Resonant sterile neutrino production

- Solve numerically the coupled equations (with Hubble expansion and QCD transition) from $T=5 \mathrm{GeV}$ down to $T^{*}=1 \mathrm{MeV}$. Very narrow resonance, numerically tricky. JG Laine JHEP1511 (2015)

Resonant sterile neutrino production

- All results and code available at http:/ / www.laine.itp.unibe.ch/dmpheno/

Resonant sterile neutrino production

- Some tension with recent astrophysical constraints Baur et al 1706.03118

Summary

- Right-handed neutrinos are an economical extension of the SM potentially capable of accounting for three shortcomings
- We have determined the equilibration and washout rates for GeV -scale RHNs at leading order for $5 \mathrm{GeV}<T<160 \mathrm{GeV}$
- In the broken phase these rates peak at $T \sim 10-30 \mathrm{GeV}$, due to the efficient, resonance-like indirect processes, with consequences for leptogenesis and keV scale dark matter
- Illustration of the resonant production mechanism for $\mathbf{k e V}$ scale dark matter

