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Quantum Chromodynamics
Effective Field Theories of QCD for Heavy Quarkonia at Finite Temperature

• QCD is the accepted  theory of the strong interactions. Its 
quantization causes the coupling constant to run with the energy 
and introduces the scale �QCD � 200 MeV

12 Siegfried Bethke: The 2009 World Average of αs

of the measurements with the others, exclusive averages,
leaving out one of the 8 measurements at a time, are cal-
culated. These are presented in the 5th column of table 1,
together with the corresponding number of standard de-
viations 5 between the exclusive mean and the respective
single measurement.

As can be seen, the values of exclusive means vary only
between a minimum of 0.11818 and a maximum 0.11876.
Note that in the case of these exclusive means and ac-
cording to the ”rules” of calculating their overall errors,
in four out of the eight cases small error scaling factors
of g = 1.06...1.08 had to be applied, while in the other
cases, overall correlation factors of about 0.1, and in one
case of 0.7, had to be applied to assure χ2/ndf = 1. Most
notably, the average value αs(MZ0) changes to αs(MZ0) =
0.1186±0.0011when omitting the result from lattice QCD.

5 Summary and Discussion

In this review, new results and measurements of αs are
summarised, and the world average value of αs(MZ0), as
previously given in [7,28,6], is updated. Based on eight
recent measurements, which partly use new and improved
N3LO, NNLO and lattice QCD predictions, the new av-
erage value is

αs(MZ0) = 0.1184± 0.0007 ,

which corresponds to

Λ(5)

MS
= (213 ± 9 )MeV .

This result is consistent with the one obtained in the pre-
viuos review three years ago [28], which was αs(MZ0) =
0.1189±0.0010. The previous and the actual world average
have been obtained from a non-overlapping set of single
results; their agreement therefore demonstrates a large de-
gree of compatibility between the old and the new, largely
improved set of measurements.

The individual mesurements, as listed in table 1 and
displayed in figure 5, show a very satisfactory agreement
with each other and with the overall average: only one
out of eight measurements exceeds a deviation from the
average by more than one standard deviation, and the
largest deviation between any two out of the eight results,
namely the ones from τ decays and from structure func-
tions, amounts to 2 standard deviations 6.

There remains, however, an apparent and long-standing
systematic difference: results from structure functions pre-
fer smaller values of αs(MZ0) than most of the others, i.e.
those from e+e− annihilations, from τ decays, but also
those from jet production in deep inelastic scattering. This
issue apparently remains to be true, although almost all of
the new results are based on significantly improved QCD

5 The number of standard deviations is defined as the
square-root of the value of χ2.

6 assuming their assigned total errors to be fully uncorre-
lated.

predictions, up to N3LO for structure functions, τ and Z0

hadronic widths, and NNLO for e+e− event shapes.
The reliability of “measurements” of αs based on “ex-

periments” on the lattice have gradually improved over
the years, too. Including vaccum polarisation of three light
quark flavours and extended means to understand and cor-
rect for finite lattice spacing and volume effects, the overall
error of these results significally decreased over time, while
the value of αs(MZ0) gradually approached the world aver-
age. Lattice results today quote the smallest overall error
on αs(MZ0); it is, however, ensuring to see and note that
the world average without lattice results is only marginally
different, while the small size of the total uncertainty on
the world average is, naturally, largely influenced by the
lattice result.
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Fig. 6. Summary of measurements of αs as a function of the
respective energy scale Q. The curves are QCD predictions for
the combined world average value of αs(MZ0), in 4-loop ap-
proximation and using 3-loop threshold matching at the heavy
quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Full sym-
bols are results based on N3LO QCD, open circles are based on
NNLO, open triangles and squares on NLO QCD. The cross-
filled square is based on lattice QCD. The filled triangle at
Q = 20 GeV (from DIS structure functions) is calculated from
the original result which includes data in the energy range from
Q =2 to 170 GeV.

In order to demonstrate the agreement of measure-
ments with the specific energy dependence of αs predicted
by QCD, in figure 6 the recent measurements of αs are
shown as a function of the energy scale Q. For those results
which are based on several αs determinations at different
values of energy scales Q, the individual values of αs(Q)
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of the measurements with the others, exclusive averages,
leaving out one of the 8 measurements at a time, are cal-
culated. These are presented in the 5th column of table 1,
together with the corresponding number of standard de-
viations 5 between the exclusive mean and the respective
single measurement.

As can be seen, the values of exclusive means vary only
between a minimum of 0.11818 and a maximum 0.11876.
Note that in the case of these exclusive means and ac-
cording to the ”rules” of calculating their overall errors,
in four out of the eight cases small error scaling factors
of g = 1.06...1.08 had to be applied, while in the other
cases, overall correlation factors of about 0.1, and in one
case of 0.7, had to be applied to assure χ2/ndf = 1. Most
notably, the average value αs(MZ0) changes to αs(MZ0) =
0.1186±0.0011when omitting the result from lattice QCD.

5 Summary and Discussion

In this review, new results and measurements of αs are
summarised, and the world average value of αs(MZ0), as
previously given in [7,28,6], is updated. Based on eight
recent measurements, which partly use new and improved
N3LO, NNLO and lattice QCD predictions, the new av-
erage value is

αs(MZ0) = 0.1184± 0.0007 ,

which corresponds to

Λ(5)

MS
= (213 ± 9 )MeV .

This result is consistent with the one obtained in the pre-
viuos review three years ago [28], which was αs(MZ0) =
0.1189±0.0010. The previous and the actual world average
have been obtained from a non-overlapping set of single
results; their agreement therefore demonstrates a large de-
gree of compatibility between the old and the new, largely
improved set of measurements.

The individual mesurements, as listed in table 1 and
displayed in figure 5, show a very satisfactory agreement
with each other and with the overall average: only one
out of eight measurements exceeds a deviation from the
average by more than one standard deviation, and the
largest deviation between any two out of the eight results,
namely the ones from τ decays and from structure func-
tions, amounts to 2 standard deviations 6.

There remains, however, an apparent and long-standing
systematic difference: results from structure functions pre-
fer smaller values of αs(MZ0) than most of the others, i.e.
those from e+e− annihilations, from τ decays, but also
those from jet production in deep inelastic scattering. This
issue apparently remains to be true, although almost all of
the new results are based on significantly improved QCD

5 The number of standard deviations is defined as the
square-root of the value of χ2.

6 assuming their assigned total errors to be fully uncorre-
lated.

predictions, up to N3LO for structure functions, τ and Z0

hadronic widths, and NNLO for e+e− event shapes.
The reliability of “measurements” of αs based on “ex-

periments” on the lattice have gradually improved over
the years, too. Including vaccum polarisation of three light
quark flavours and extended means to understand and cor-
rect for finite lattice spacing and volume effects, the overall
error of these results significally decreased over time, while
the value of αs(MZ0) gradually approached the world aver-
age. Lattice results today quote the smallest overall error
on αs(MZ0); it is, however, ensuring to see and note that
the world average without lattice results is only marginally
different, while the small size of the total uncertainty on
the world average is, naturally, largely influenced by the
lattice result.
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Fig. 6. Summary of measurements of αs as a function of the
respective energy scale Q. The curves are QCD predictions for
the combined world average value of αs(MZ0), in 4-loop ap-
proximation and using 3-loop threshold matching at the heavy
quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Full sym-
bols are results based on N3LO QCD, open circles are based on
NNLO, open triangles and squares on NLO QCD. The cross-
filled square is based on lattice QCD. The filled triangle at
Q = 20 GeV (from DIS structure functions) is calculated from
the original result which includes data in the energy range from
Q =2 to 170 GeV.

In order to demonstrate the agreement of measure-
ments with the specific energy dependence of αs predicted
by QCD, in figure 6 the recent measurements of αs are
shown as a function of the energy scale Q. For those results
which are based on several αs determinations at different
values of energy scales Q, the individual values of αs(Q)
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Bethke EPJC64 (2009)



Quantum Chromodynamics
Effective Field Theories of QCD for Heavy Quarkonia at Finite Temperature

• QCD is the accepted  theory of the strong interactions. Its 
quantization causes the coupling constant to run with the energy 
and introduces the scale 

Asymptotic freedom

Confinement

�QCD � 200 MeV

12 Siegfried Bethke: The 2009 World Average of αs

of the measurements with the others, exclusive averages,
leaving out one of the 8 measurements at a time, are cal-
culated. These are presented in the 5th column of table 1,
together with the corresponding number of standard de-
viations 5 between the exclusive mean and the respective
single measurement.

As can be seen, the values of exclusive means vary only
between a minimum of 0.11818 and a maximum 0.11876.
Note that in the case of these exclusive means and ac-
cording to the ”rules” of calculating their overall errors,
in four out of the eight cases small error scaling factors
of g = 1.06...1.08 had to be applied, while in the other
cases, overall correlation factors of about 0.1, and in one
case of 0.7, had to be applied to assure χ2/ndf = 1. Most
notably, the average value αs(MZ0) changes to αs(MZ0) =
0.1186±0.0011when omitting the result from lattice QCD.

5 Summary and Discussion

In this review, new results and measurements of αs are
summarised, and the world average value of αs(MZ0), as
previously given in [7,28,6], is updated. Based on eight
recent measurements, which partly use new and improved
N3LO, NNLO and lattice QCD predictions, the new av-
erage value is

αs(MZ0) = 0.1184± 0.0007 ,

which corresponds to

Λ(5)

MS
= (213 ± 9 )MeV .

This result is consistent with the one obtained in the pre-
viuos review three years ago [28], which was αs(MZ0) =
0.1189±0.0010. The previous and the actual world average
have been obtained from a non-overlapping set of single
results; their agreement therefore demonstrates a large de-
gree of compatibility between the old and the new, largely
improved set of measurements.

The individual mesurements, as listed in table 1 and
displayed in figure 5, show a very satisfactory agreement
with each other and with the overall average: only one
out of eight measurements exceeds a deviation from the
average by more than one standard deviation, and the
largest deviation between any two out of the eight results,
namely the ones from τ decays and from structure func-
tions, amounts to 2 standard deviations 6.

There remains, however, an apparent and long-standing
systematic difference: results from structure functions pre-
fer smaller values of αs(MZ0) than most of the others, i.e.
those from e+e− annihilations, from τ decays, but also
those from jet production in deep inelastic scattering. This
issue apparently remains to be true, although almost all of
the new results are based on significantly improved QCD

5 The number of standard deviations is defined as the
square-root of the value of χ2.

6 assuming their assigned total errors to be fully uncorre-
lated.

predictions, up to N3LO for structure functions, τ and Z0

hadronic widths, and NNLO for e+e− event shapes.
The reliability of “measurements” of αs based on “ex-

periments” on the lattice have gradually improved over
the years, too. Including vaccum polarisation of three light
quark flavours and extended means to understand and cor-
rect for finite lattice spacing and volume effects, the overall
error of these results significally decreased over time, while
the value of αs(MZ0) gradually approached the world aver-
age. Lattice results today quote the smallest overall error
on αs(MZ0); it is, however, ensuring to see and note that
the world average without lattice results is only marginally
different, while the small size of the total uncertainty on
the world average is, naturally, largely influenced by the
lattice result.
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Fig. 6. Summary of measurements of αs as a function of the
respective energy scale Q. The curves are QCD predictions for
the combined world average value of αs(MZ0), in 4-loop ap-
proximation and using 3-loop threshold matching at the heavy
quark pole masses Mc = 1.5 GeV and Mb = 4.7 GeV. Full sym-
bols are results based on N3LO QCD, open circles are based on
NNLO, open triangles and squares on NLO QCD. The cross-
filled square is based on lattice QCD. The filled triangle at
Q = 20 GeV (from DIS structure functions) is calculated from
the original result which includes data in the energy range from
Q =2 to 170 GeV.

In order to demonstrate the agreement of measure-
ments with the specific energy dependence of αs predicted
by QCD, in figure 6 the recent measurements of αs are
shown as a function of the energy scale Q. For those results
which are based on several αs determinations at different
values of energy scales Q, the individual values of αs(Q)
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2
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The phase diagram of QCD
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• In the upper-left region, lattice QCD indicates a (pseudo)critical 
temperature Tc~160 MeV ~2x1012 K (Budapest-Wuppertal and 
HotQCD collaborations)
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Figure 2.1: A sketch of the QCD phase diagram. Figure taken from [96].

tential and T is the temperature1. In the bottom left corner, for low temperatures and
chemical potentials, there is the hadronic matter phase, where quarks and gluons are
confined into hadrons and the approximate chiral symmetry of QCD is spontaneously
broken. These hadrons form a gas which, at su�ciently high chemical potential and low
temperatures undergoes a phase transition to a liquid phase. The critical line and its
endpoint are shown in green in the diagram and are of great interest for nuclear physics,
since they are in the same (T, µB) region of nuclear matter.
Moving further to the right at low temperatures and increasing chemical potentials, one
encounters the quark matter phases, which can be described by a degenerate Fermi liquid
and might be of relevance for the description of the cores of compact/neutron stars. At
asymptotically large chemical potentials there is a growing consensus for the existence of
a Colour SuperConductor (CSC) phase, possibly in its particular Colour-Flavour Locked
(CFL) flavour [97]. We refer to [98] for a review on colour superconductivity. It is also
worth mentioning that, for SU(Nc) gauge theories in the large-Nc limit, the existence
of a confined but chirally symmetric phase, called quarkyonic matter has recently been
proposed [99]. This phase would occur in the region of the phase diagram of the large-Nc

theory corresponding to the quark matter region of the QCD phase diagram.
Our sector of interest is instead the upper-left part of the diagram, which is occupied
by the quark-gluon plasma (QGP) phase. In this phase, whose name is due to Shuryak
[100], quarks and gluons are no longer confined into hadrons, but rather unbound in a
gas of coloured particles and the approximate chiral symmetry is restored. This phase
has been actively searched for in heavy ion collision experiments in the past decades,
from the pioneering experiments at the Alternating Gradient Synchrotron (AGS) at
Brookhaven National Laboratory (BNL) and at the Super Proton Synchrotron (SPS) at
CERN in the 1980s and 1990s, to the ongoing experiments at the Relativistic Heavy Ion

1We adopt a system of units where the Boltzmann constant kB is equal to unity; therefore a temper-
ature of 1 GeV corresponds in SI units to approximately 1.16� 1013 K.
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Quark-Gluon Plasma:
deconfined, chirally symmetric phase

• At sufficiently high temperature and/or baryon chemical 
potential the phase diagram of QCD exhibits new phases



• The deconfined phase can be 
sought after experimentally in 
relativistic heavy ion collisions

• Such experiments have been
performed at the CERN SPS, are
being performed at the RHIC (BNL) and the LHC and will 
be performed at FAIR (GSI). The energies            are  200 
GeV at RHIC and 2.76 TeV at LHC

• The highest particle multiplicities are measured in these 
experiments, such as
ALICE PRL105 (2010)

Heavy ion collision experiments

Effective Field Theories of QCD for Heavy Quarkonia at Finite Temperature

p
sNN

dNch/d⌘ = 1584 ± 4 (stat.) ± 76 (sys.)



• Need for hard probes, i.e. 
high-energy particles not 
in equilibrium with the 
medium to perform its 
tomography and 
understand its properties, 
such as deconfinement



• Need for hard probes, i.e. 
high-energy particles not 
in equilibrium with the 
medium to perform its 
tomography and 
understand its properties, 
such as deconfinement

• Quarkonia represent one of 
the most important hard 
probes, together with jet-
quenching, electromagnetic 
probes and heavy open 
flavour



Heavy quarkonia

Effective Field Theories of QCD for Heavy Quarkonia at Finite Temperature

QQ

⇤QCD

• The masses of  the c (~1.5 GeV), b (~4.5 GeV) and t (~175 
GeV) are much larger than            .
They are called heavy quarks, and their quark-antiquark 
bound states          are called quarkonia

• The lower resonances of charmonium and bottomonium 
are to a good deal non-relativistic and perturbative. The 
vector states have narrow widths and clean dileptonic 
decays with significant branching ratios.



Quarkonium suppression

Effective Field Theories of QCD for Heavy Quarkonia at Finite Temperature

• Proposed in 1986 as a probe and “thermometer” of the medium 
produced by the collision
Matsui Satz PLB178 (1986)
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deconfined medium and a suppressed yield is observed in the 
dilepton spectrum
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deconfined medium and a suppressed yield is observed in the 
dilepton spectrum

• A good understanding of suppression requires understanding 
of

• In-medium production and cold nuclear matter effects

• In-medium bound-state dynamics

• Recombination effects
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Figure 2: RAA of prompt J/� (red squares) as function of Npart. The left panel shows the compar-
ison to PHENIX data at mid- (open black squares) and at forward rapidity (open blue circles).
The right panel compares to STAR data (green stars).

of high pT J/� at RHIC energies than at the LHC.
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Figure 3: RAA of prompt J/� (red squares) as function of pT (left) and rapidity (right). The data
are compared to PHENIX and STAR results.

CMS has separated the prompt J/� from the non-prompt contribution due to B-hadron decays.
The nuclear modification factor of prompt J/� has been measured as function of centrality,
pT, and rapidity in PbPb collisions at

�
sNN = 2.76 TeV. A suppression of prompt J/� has been

observed, which increases with centrality up to a factor of 5. CMS has also measured the RAA
of non-prompt J/� which gives access to the in-medium energy loss of b-quarks [3, 6].
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Charmonium suppression in experiments
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Quarkonium in ALICE 7

a function of the collision centrality. A 4% efficiency loss in the most central bin

0-10% is observed, in agreement with the efficiency loss measurement based on the

redundancy of the tracking chambers in each station. The J/ψ nuclear modification
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Figure 3. Left: Invariant mass distribution for opposite-sign muon pairs in the
centrality class 0-10% after mixed-event combinatorial-background subtraction. Right:
J/ψ RAA as a function of 〈Npart〉 in Pb-Pb collisions at

√
sNN=2.76 TeV compared to

PHENIX results in Au-Au collisions at
√
sNN = 200 GeV

factor (down to pT=0) was evaluated (see Fig.3-right). The largest contributions to

the RAA systematic uncertainty are due to the signal extraction and the pp reference

cross-section uncertainties. Fig 3, right panel, compares our results to those obtained by

the PHENIX experiment [6]. We observe a weaker dependence with centrality than that

observed at RHIC, is measured. The RAA(pT > 0, 2.5 < y < 4) for the most central class

is about a factor 2 larger than that measured by PHENIX with muons in the forward
region; the difference is smaller, but still significant, when comparing to PHENIX at mid-

rapidity. The RCP was evaluated to make a comparison to the ATLAS results [21]. The

ALICE RCP(pT > 0, 2.5 < y < 4) is smaller than the RCP (pT > 6.5 GeV/c, |y| < 2.4)

measured by ATLAS, thus the J/ψ RAA either increases with rapidity, or decreases

with pT, or both. The measurement of the J/ψ in the dielectron channel is challenging

with the present statistics and large hadronic background. However the signal has been
extracted in the centrality class 0-40% and RCP with respect to the centrality class

40-80% has been evaluated. Within the large systematic uncertainties, the dielectron

RCP is compatible with ATLAS and ALICE di-muon RCP measurements. Note that the

ALICE J/ψ measurement contains a contribution from B feed down. This contribution

has been measured to be 10% in pp collisions in our rapidity domain [22] so the effect

on the RAA is expected to be small (at most a reduction in RAA of 10%, if we assume
binary scaling for bottom production). Further analysis with the present data is being

carried out: pT and y dependence of RAA, and narrower centrality bins for the most

peripheral centrality classes.

• J/! suppression has been measured at SPS, RHIC 
and now LHC. SPS~RHIC

• Nuclear modification factor RAA ⌘ YieldAA

Yieldpp ⇥Nbin



Bottomonium suppression in experiments
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• First quality data on the ϒ family from CMS
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Figure 16: Fit to the pp 2.76 TeV dimuon invariant-mass distribution in the range pT < 20 GeV/c
for |y| < 2.4, showing the � peaks, with the heavy ion algorithm.
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Figure 17: Invariant mass distributions of 7 TeV and 2.76 TeV data, reconstructed with the pp
algorithms, using tracker muons and applying the acceptance and the muon quality cuts used
for pp analysis.
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|y| < 2.4 in minimum bias collisions, for muons above 4 GeV/c.

• Significant suppression of the ϒ(2S) and ϒ(3S)
CMS, 1105.4894 and CMS-PAS-HIN-10-006 (2011)
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Quarkonium suppression: the theory

Effective Field Theories of QCD for Heavy Quarkonia at Finite Temperature

• The original hypothesis of Matsui and Satz was 
motivated by colour screening of the interaction 
binding the state

V (r) ⇥ ��s
e�mDr

r

• Studied with potential models, lattice spectral 
functions, AdS/CFT and now with EFTs

r � 1
mD

Bound state
dissolves
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Static quark anti-quark free and internal energy in 2-flavor QCD Olaf Kaczmarek
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Figure 1: (left) The colour singlet quark anti-quark free energies, F1(r,T ), at several temperatures as func-
tion of distance in physical units. Shown are results from lattice studies of 2-flavour QCD (from [1]). The

solid line represents the T = 0 heavy quark potential,V (r). The dashed error band corresponds to the string
breaking energy at zero temperature, V (rbreaking) ! 1000− 1200 MeV, based on the estimate of the string

breaking distance, rbreaking ! 1.2−1.4 fm [2]. (right) The screening radius estimated from the inverse Debye
mass, rD ≡ 1/mD (Nf=0: open squares, Nf=2 filled squares), and the scale rmed (Nf=0: open circles, Nf=2:

filled circles, Nf=3: crosses) defined in (2.1) as function of T/Tc. The horizontal lines give the mean squared
charge radii of some charmonium states, J/! , "c and ! ′ (see also [3, 4]) and the band at the left frame shows
the distance at which string breaking is expected in 2-flavor QCD at T = 0 and quark mass m#/m$ ! 0.7
[2].

1. Introduction

A simple Ansatz to study the possible existence of bound states above the critical temperature

is to use effective temperature dependent potentials that model the medium modifications of strong

interactions in a quark gluon plasma. To what extend a suitable effective potential at finite tem-

perature can be defined by quark antiquark free or internal energies and furthermore how realistic

such (simple) descriptions of bound states in a deconfined medium are is still an open question.

By comparing the screening radii obtained from lattice results on singlet free energies in 2-flavour

QCD to the mean squared charge radii we obtain first estimates on the temperatures where char-

monium bound states may be influenced by medium effects. In more realistic potential model

calculations effective temperature dependent potentials that model medium effects are used in the

Schrödinger equation. We present the heavy quark free energies and their contributions, i.e. en-

tropy and internal energy, and discuss the different results obtained using those contributions in

potential models.

2. Screening radii and medium modifications

In Fig. 1 (left) we show results for the heavy quark anti-quark free energies in 2-flavour QCD

[1]. While in the limit of short distances F1(r,T ) shows no or only little medium effects, i.e. F1(r→

0) ! V (r), at large distances the free energies approach temperature dependent constant values,

F%(T ) ≡ F1(r→ %,T ). To characterise distances at which medium effects become important we

introduce a screening radius, rmed , defined by the distance at which the value of the zero temperature
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S
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• Schrödinger equation with all 
medium effects encoded in T-
dependent potential

• Potential extracted from lattice 
measurements of 
thermodynamical free energies 
(Polyakov-loop correlators)
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• Schrödinger equation with all 
medium effects encoded in T-
dependent potential

• Potential extracted from lattice 
measurements of 
thermodynamical free energies 
(Polyakov-loop correlators)

• No QCD derivation of these 
models and no clear relation 
between the free energies and the 
potential
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Potential models

Effective Field Theories of QCD for Heavy Quarkonia at Finite Temperature

• Schrödinger equation with all 
medium effects encoded in T-
dependent potential

• Potential extracted from lattice 
measurements of 
thermodynamical free energies 
(Polyakov-loop correlators)

• No QCD derivation of these 
models and no clear relation 
between the free energies and the 
potential

• All models agree on a qualitative 
picture of sequential dissociation 

T/TC 1/〈r〉

ϒ(1S)

J/ψ(1S)

χc(1P)≤ 1

2

1.2

χb(1P)J/ψ(1S)

ψ’(2S)

ϒ(1S)
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Effective Field Theories

Effective Field Theories of QCD for Heavy Quarkonia at Finite Temperature

• The Wilson coefficient are obtained by matching 
appropriate Green functions in the two theories

• The procedure can be iterated 

• EFTs prove to be a valuable tool for physical problems 
characterized by various sufficiently separated energy/
momentum scales

• An EFT is constructed by integrating out modes of energy 
and momentum larger than the cut-off 

Wilson coefficient

Low-energy 
operator/
large scale         
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n
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• Non-relativistic        bound states 
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of the mass, momentum transfer 
and kinetic/binding energy scales
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Non-Relativistic Scales

Effective Field Theories of QCD for Heavy Quarkonia at Finite Temperature

• Non-relativistic        bound states 
are characterized by the hierarchy 
of the mass, momentum transfer 
and kinetic/binding energy scales

• One can then expand observables 
in terms of the ratio of the scales 
and construct a hierarchy of EFTs 
that are equivalent to QCD order-
by-order in the expansion 
parameter

m

mv ⇠ m↵s ⇠
⌧
1

r

�

mv2 ⇠ m↵2
s ⇠ E

QQ



Non-Relativistic Effective Field Theories

Effective Field Theories of QCD for Heavy Quarkonia at Finite Temperature

Integration of the mass scale:
Non-Relativistic QCD (NRQCD)

m

mv ⇠
⌧
1

r

�

mv2 ⇠ E

• The mass is integrated out and the theory 
becomes non-relativistic

• Factorization between contributions from 
the scale m and from lower-energies

• Ideal for production and decay studies

Caswell Lepage PLB167 (1986)
Bodwin Braaten Lepage PRD51 (1995)
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Effective Field Theories of QCD for Heavy Quarkonia at Finite Temperature

Integration of the scale mv:
Potential NRQCD (pNRQCD)

m

mv ⇠
⌧
1

r

�

mv2 ⇠ E

• Integrating out the momentum transfer scale 
causes the appearance of non-local four-
fermion operators, whose Wilson coefficients 
are the potentials

• Modern, rigorous definition and derivation 
from QCD of the potential

• Ideal for spectroscopy, decays and radiative 
transitions
Pineda Soto NPPS64 (1998)
Brambilla Pineda Soto Vairo NPB566 (2000)
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Integration of the scale mv:
Potential NRQCD (pNRQCD)
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• Main goal: extend the well-established T=0 NR EFT 
framework to finite temperatures to address systematically 
heavy quarkonia in the medium

• In real time:

• Modern and rigorous definition of the potential and derivation from 
QCD at finite temperature, systematically taking into account the 
imaginary parts that lead to the thermal width

• Calculations of in-medium spectra and widths

• In imaginary time:

• Clarification of the relation between the thermodynamical free 
energies and the EFT potentials

Goals of the thesis

Effective Field Theories of QCD for Heavy Quarkonia at Finite Temperature
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mass)

• In the weak coupling assumption these 
scales develop a hierarchy
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that the thermal medium introduces new 
scales in the physical problem

• The temperature

• The electric screening scale (Debye mass)

• The magnetic screening scale (magnetic 
mass)

• In the weak coupling assumption these 
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T

gT � mD

g2T � mm
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Finite-temperature NR EFT how-to

• Assume a global hierarchy between the bound-state and 
thermodynamical scales

• Many different possibilities have been considered in the two 
relevant macroregions                   and                     (with               ) 

• Proceed from the top to systematically integrate out each scale, 
creating a tower of EFTs. Make use of existing EFTs (T=0 NR EFTs, 
finite T EFTs such as HTL)

• Once the scale mv has been integrated out the colour singlet and 
octet potentials appear

?
T ⇥ mD � gT ⇥ mm � g2T

T � mv mv � T

m � mv ⇠ m↵s ⇠ h1/ri � mv2 ⇠ m↵2
s ⇠ E

m � T



The screening region:assdda       
• For T>>1/r~mD we provide an EFT derivation and rigorous 

definition of the potential first obtained by Laine et al.

When                ⇒                                  Landau Damping
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Advantages of the realtime calculation

VHTL(r) = ��sCF

�
e�mDr

r
� i

2T

mDr
f(mDr)

⇥

r � 1
mD

ImV � ReV

T � mv



The screening region:assdda       
• For T>>1/r~mD we provide an EFT derivation and rigorous 

definition of the potential first obtained by Laine et al.

When                ⇒                                  Landau Damping
Laine Philipsen Romatschke Tassler JHEP0703 (2007)
Advantages of the realtime calculation

• For T>>1/r>>mD we obtain new results:

When                    ⇒                             Dissociation temperature  
Brambilla JG Petreczky Vairo PRD78 (2008) Escobedo Soto PRA78 
(2008) Laine 0810.1112 (2008)                      
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The perturbation region:asdasd
• When mv>>T>>mv2 the thermal medium acts as a 

perturbation to the potential. This region is 
particularly relevant for the ground states of 
bottomonium: 

• The EFT obtained by integrating out the 
temperature from pNRQCD is called pNRQCDHTL

mv � T

LpNRQCDHTL
= LHTL +Tr

(
S† [i@0 � h

s

� �V
s

] S + O† [iD0 � h
o

� �V
o

] O

)

+Tr
�
O†r · gE S + S†r · gEO

 
+

1

2
Tr

�
O†r · gEO+O†Or · gE

 
+ . . .

Brambilla Escobedo JG Soto Vairo JHEP1009 (2010)
Brambilla Escobedo JG Vairo JHEP1107 (2011)

m↵s ⇠ 1.5 GeV, T < 1 GeV



The perturbation region:asdasd
• Within this theory we computed the spectrum and the 

thermal width to order           in the power counting of the EFT
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where ∆V =
1

r

(

αVo

2Nc
+ CF αVs

)

≈
Ncαs

2r
. The corresponding Feynman diagram is shown

in Fig. 5. Integrals over momenta have been regularized in dimensional regularization (d is

the number of dimensions, µ is the compensating scale). In Eq. (64), i/(−k0 − ∆V + iε)

is the “11” component of the static octet propagator; Eq. (66) vanishes because the “12”

component of the static octet propagator vanishes and in Eq. (67), 2πδ(−k0 − ∆V ) is the

“21” component of the static octet propagator. Note that vertices of type “1” and “2”

have opposite signs. Equation (65), which may also be read [−iδVs(r)]22 = [−iδVs(r)]
∗
11,

reflects the relation existing between the “11” and “22” components of the propagators in

the real-time formalism.

FIG. 5: The single continuous line stands for a singlet propagator, the double line for an octet

propagator, the circle with a cross for a chromoelectric dipole vertex and the curly line connecting

the two circles with a cross for a chromoelectric correlator.

We are interested in calculating the contribution to the integrals in Eqs. (64)-(67) from

momenta k ∼ T . Since T $ ∆V , we may expand in ∆V/T . Moreover, at leading order,

the propagators in Eqs. (64) and (67) are the free ones, D(0)
00 and D(0)

ii , given in Eqs. (36)

and (37). However the leading-order thermal contribution, which would be of order g2 r2 T 3,

vanishes:
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∫

ddk

(2π)d
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−k0 + iε
(k0)2 4πδ(k2) nB(|k0|) = 0 , (68)
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r2

d − 1
µ4−d

∫

ddk

(2π)d
2πδ(−k0) (k0)2 4πδ(k2) nB(|k0|) = 0 . (69)

Several next-to-leading order corrections are possible, because several scales are still dy-

namical in the EFT: we may have corrections of relative order ∆V/T , mD/T , (rT ), αs and

so on.

(1) First, we consider corrections of order ∆V/k0 or higher to the quark-antiquark prop-

agator, which contribute to order g2 r2 T 3 × ∆V/T or higher to δVs(r):
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diagram shown in Fig. 8; hence, at next-to-leading order we can write
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and, the relevant limit for the gluon polarization ΠR,A
00 (k) in Coulomb gauge is given by

Eqs. (44) and (45). Finally, the correction to the real-time potential reads

δVs(r) =

[

−
3

2
ζ(3) CF

αs

π
r2 T m2

D +
2

3
ζ(3) NcCF α2

s r2 T 3

]





1 0

0 −1





+i

[

CF

6
αs r2 T m2

D

(

1

ε
+ γE + ln π − ln

T 2

µ2
+

2

3
− 4 ln 2 − 2

ζ ′(2)

ζ(2)

)

+
4π

9
ln 2 NcCF α2

s r2 T 3

]





1 0

−2 1



 , (82)

where ε = (4−d)/2, γE is the Euler gamma and ζ the Riemann zeta function (ζ(2) = π2/6).

Note that in Eq. (82), besides terms that are proportional to the Debye mass there are finite

terms, both in the real and in the imaginary part, that do not depend on it.

FIG. 8: The symbols are like in Fig. 5. The dashed blob stands for a one-loop self-energy insertion

in the gluon propagator.

Equation (82) contains an imaginary contribution. The origin of this contribution is

different from the one in Eq. (73). The one here comes from the imaginary part in the

gluon self energy, which is due to to the scattering of particles with momenta of order T in

the thermal bath with space-like gluons, (k0)2 < |#k|2, (Landau damping) while the one in
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Potentials and free energies
• The Polyakov loop (PL) and the Polyakov-loop correlator (PLC) 

are related to the thermodynamical free energies of a static 
quark and of a static        pair. Order parameter in pure gauge

hLi ⌘ 1/Nc

*
TrP exp

 
�ig

Z 1/T

0
d⌧A0(x, ⌧)

!+
= e�

FQ(T )

T hL†(0)L(r)i = e�
F
QQ

(r,T )

T

QQ



Potentials and free energies
• The Polyakov loop (PL) and the Polyakov-loop correlator (PLC) 

are related to the thermodynamical free energies of a static 
quark and of a static        pair. Order parameter in pure gauge

• We have computed both in perturbation theory. For the PL we 
correct the long-standing result, for the PLC our results, 
obtained for short distances, are new

hLi ⌘ 1/Nc

*
TrP exp

 
�ig

Z 1/T

0
d⌧A0(x, ⌧)

!+
= e�

FQ(T )

T hL†(0)L(r)i = e�
F
QQ

(r,T )

T

QQ



Potentials and free energies
• The Polyakov loop (PL) and the Polyakov-loop correlator (PLC) 

are related to the thermodynamical free energies of a static 
quark and of a static        pair. Order parameter in pure gauge

• We have computed both in perturbation theory. For the PL we 
correct the long-standing result, for the PLC our results, 
obtained for short distances, are new

• Our re-analysis of the PLC within pNRQCD in imaginary time 
shows that the singlet free energy differs from the real-time 
singlet potential not only in the very important imaginary part, 
completely missing here, but also in the real part
Brambilla JG Petreczky Vairo PRD82 (2010)
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Conclusions
• Construction of an EFT framework for heavy quarkonia at finite 

temperature. Within this framework we can

• Systematically take into account corrections and include all 
medium effects

• Give a rigorous QCD derivations of the potential, bridging 
the gap with potentials models which appear as leading-
order picture here

• Compute potentials, spectra and widths in different regimes, 
with particular relevance for the new frontier of ϒ(1S) 
phenomenology

• Study the relation between potentials and free energies



Outlook
• Take our EFT framework to the strong-coupling 

region, again following the path of the T=0 EFT. 
Lattice progress is needed, work in progress

• Phenomenological application to the ϒ(1S)

• Relation between our EFT widths and the 
previous approaches, work in progress

• Application of the methodology to other 
problems, such as heavy quark energy loss


