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Photons from heavy ion collisions
• The hard partonic processes in the heavy ion collision 

produce quarks, gluons and primary photons

• At a later stage, quarks and gluons form a plasma.

• A jet traveling through the QGP can radiate jet-thermal 
photons

• Scatterings of thermal partons can produce thermal 
photons

• Later on, partons hadronize. Interactions between charged 
hadrons produce hadron gas thermal photons

• Hadrons may decay into decay photons



Thermal photons

• !EM ≪1 ⇒ re-interactions negligible
“Photons escape from the plasma”

• Thermal photons might then be a good hard 
probe of QGP properties

• The resulting spectrum is not a blackbody 
spectrum with some TQGP



Thermal photons
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IV. DIRECT-PHOTON SPECTRA

We start the comparison of our theoretical calculations
of direct photons to data at RHIC with the absolute
yields in the transverse-momentum (qt spectra). Let us
first illustrate the quantitative effect of updating the ra-
dial expansion starting from our original predictions in
Ref. [9].3 In the latter, a transverse acceleration of the
fireball surface of aT = 0.053c2/fm had been assumed,
which, together with a fireball lifetime of 15 fm/c, leads
to a surface velocity of βs ! 0.62 and a freezeout tem-
perature of Tfo = 108 MeV for Au-Au collisions in the
0-20% centrality bin (Npart = 280 and Ncoll = 765). The
pertinent photon spectra, displayed in the upper panel of
Fig. 4, closely resemble the results of Fig. 12 in Ref. [9].4

A window of QGP-radiation dominance is present for
qt ! 1.5-3 GeV.

The situation changes somewhat with an update per-
formed in 2007 triggered by the analysis of NA60 dilep-
tons at the SPS, specifically in the context of their qt-
spectra. The fireball acceleration was increased to aT =
0.08-0.1c2/fm to better reproduce hadron spectra, which
also allowed for a significantly improved description of
the slope parameters in the dilepton qt spectra [10]. It
was also checked that the agreement with the WA98
direct-photon spectra at SPS [36], as found in Ref. [9],
was not distorted (see, e.g., Fig. 23 in Ref. [1]). At RHIC,
the pertinent fireball of lifetime τ ! 15 fm/c results in
a freezeout temperature of Tfo = 98 MeV with a surface
transverse flow of βs = 0.77. The consequences for the
direct-photon spectra, using the same thermal emission
rates and fireball chemistry as before, are illustrated in
the middle panel of Fig. 4: while the spectral distribution
of the QGP radiation is barely affected, the hadronic ra-
diation spectrum becomes noticeably harder, thus shift-
ing the crossing with the QGP part up to qt ! 1.8 GeV.
In combination with an improved estimate of the pri-
mordial emission, adjusted to then available PHENIX pp
data, the QGP window shrinks appreciably, with a max-
imum fraction of ca. 42% of the total at qt ! 2.1 GeV.

Finally, recent systematic analyses of light-hadron

3 For simplicity we will use for this purpose a cylindrically sym-
metric fireball (no v2) and apply an average boost of 70% of
the fireball surface flow to the photon spectra in the rest frame,
〈β〉 = 0.7βs.

4 We note that in Figs. 12 and 13 of Ref. [9] the contribution
labeled “Hadron Gas” only includes the in-medium ρ spectral
function part, not the meson-gas contributions also calculated
in there. Unfortunately, we recently realized that the spectral
function part in the photon spectra at RHIC and LHC (Figs. 12
and 13 in Ref. [9]) was computed with the spin-averaged ρ prop-
agator, Dρ = (2DT

ρ +DL
ρ )/3, which, at the photon point (where

the transverse part, DT
ρ , should be used), is by a factor of 2/3

too small. It was done correctly in the rate plots and for the SPS
calculations shown in Ref. [9]. In the present work we refer to
the “Hadron Gas” emission as the sum of spectral-function and
meson-gas contributions.
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FIG. 4: (Color online) The impact of an increasingly strong
radial flow in an expanding fireball model on direct-photon
spectra in 0-20% central Au-Au collisions at RHIC. The
transverse fireball acceleration increases from 0.053/fm (up-
per panel, corresponding to Ref. [9]) via 0.08 (middle panel;
see Refs. [1, 10]) to 0.12/fm (lower panel). The same QGP
and hadronic emission rates have been used in all cases, while
the primordial contribution has been upscaled in the middle
and lower panel. As a benchmark, we also show the pertinent
PHENIX data [7].

spectra by the STAR collaboration [32] requires an even
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Thermal photon production
• Single-photon production probability

• Expand the time evolution operator

• Assume translation invariance

• Vt is the pos. space volume ⇒ get the rate

Wightman correlator of the e.m. current-current thermal 
expectation value (with k0=k). Our operative definition, with 
k~T, always hard

How Photons Get Made

Since α
EM

! 1, work to lowest order:

• assume photon production Poissonian

• neglect back-reaction on system cooling insignificant...

Compute single-photon production at O(α
EM

)

2k0(2π)3
dProb

d3k
=

∑

X

Tr ρU †(t)|X, γ〉〈X, γ|U(t)

U(t) time evolution operator, ρ density matrix.

BNL Photons: 5 December 2011: page 3 of 27

Expand U(t) in EM interaction picture:

U(t) = 1− i
∫ t

dt′
∫

d3xeAµ(x, t′)Jµ(x, t
′) +O(e2)

Aµ produces the photon. Get assume 4-translation invariance!

dProb

d3k
=

V te2

(2π)32k0

∫

d4Y e−iK·Y
∑

X

TrρJµ(Y )|X〉〈X|Jµ(0)

V t is spacetime volume – natural to talk about rate

dΓ

d3k
=

e2

(2π)32k0

∫

d4Y e−iK·YTrρJµ(Y )Jµ(0)

No assumption (yet) about perturbativity.
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d�

d3k
=

e2

(2⇡)32k0

Z
d4Y e�iK·Y hJµ(Y )Jµ(0)i



Motivation
• The production rate is known at leading order !EM !s  

(more later)

• An NLO (!EM g3) determination

• Improve the phenomenological analyses, if not by 
giving reliable theory error bands

• On the theory side, show if the pattern of large 
NLO corrections in transport coefficients is 
reproduced

• A posteriori: pattern for other NLO transport 
calculations



• The only transport coefficient known so far at NLO is the 
heavy quark momentum diffusion coefficient, which is defined 
through the noise-noise correlator in a Langevin formalism. 
In field theory it can be written as

• The NLO computation factors in the coefficient C, which 
turns out to be sizeable

Caron-Huot Moore PRL100, JHEP0802 (2008)

NLO transport coefficients

� =
g2

3Nc

Z +⇥

�⇥
dtTrhU(t,�1)†Ei(t)U(t, 0)Ei(0)U(0,�1)i

that, to make the qualitative discussion here more precise, we will need to perform a careful

diagrammatic approach based on power counting. There is one common feature of the sources

for correction we have listed, however; all involve the influence of soft gluons. This observation

suggests that the calculation may be rephrased in terms of an effective theory of gT scale

physics, in which the hard scale ∼ T has been integrated out. This is precisely Braaten and

Pisarski’s HTL effective theory [10]. Carrying out a careful diagrammatic calculation within

this effective theory is the subject of the body of this paper; in the remainder of this section

we will present the results.

2.3 Results: QCD

The squared matrix elements for the processes of Fig. 1, summed over the initial and final

states of the light scattering targets and final states of the heavy quark, and averaged over

the initial states of the heavy quark, have been evaluated in [19], yielding

κLO ≡ g4CH

12π3

∫ ∞

0
k2dk

∫ 2k

0

q3dq

(q2 + m2
D)2

×















Nc nB(k)(1+nB(k))

(

2 − q2

k2
+

q4

4k2

)

+Nf nF (k)(1−nF (k))

(

2 − q2

2k2

)

,
(2.4)

where CH = 4
3 in QCD is the quadratic Casimir of the heavy quark representation, and

mD =
√

1.5gT in QCD with Nf=3 flavors of light quarks. Formally taking mD & T , the

integral is dominated by k ∼ T and q in the logarithmic range mD
<∼ q <∼ T . The leading

behavior in g of Eq. (2.4) can be obtained from the leading behavior in m2
D/k2 of the q

integral. Making room for the next-to-leading order correction C, the result can be written:

κ=
CHg4T 3

18π

([

Nc+
Nf

2

][

ln
2T

mD

+ξ

]

+
Nf ln 2

2
+

NcmD

T
C + O(g2)

)

. (2.5)

Here ξ = 1
2 −γE + ζ′(2)

ζ(2) ' −0.64718. The leading order part of Eq. (2.5) was given explicitly in

[19] (it could also have been extracted from the nonrelativistic limit of earlier results [14,20].)

The dependence of the next-to-leading order correction on physical parameters is contained in

the coefficient multiplying C, which itself is a pure number: all of the above-mentioned next-

to-leading order corrections depend on physical parameters in the same way as an O(mD/T )

fraction of the gluon contribution to κLO.

Expression Eq. (2.4) itself contains O(g) corrections, giving rise to a rather trivial con-

tribution2 to C, C2→2 = 21
8π ' 0.8356. It arises wholly from the k ∼ gT region of the gluon

contribution to Eq. (2.4), where the result of the q integration is poorly described by the

leading term of its m2
D/k2 expansion, which was used to obtain the leading order behavior

Eq. (2.5). Although slightly tedious, the evaluation of C2→2 is entirely straightforward and we

do not present it here. In section 4 we compute the difference between the full next-to-leading

order momentum diffusion coefficient, and what is already incorporated in κLO, and obtain

C̃ ' 1.4946. Thus C ≡ C2→2 + C̃ ' 2.3302.

2In [15] this contribution was named CEq. (4).
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NLO transport coefficients
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Figure 3: Comparison of leading and NLO results for Nf = 3 QCD as a function of coupling.

Our result Eq. (2.5) is plotted in Fig. 3. A simple-minded estimate of the regime of

validity of perturbation theory can be given by equating the size of the correction to the size

of the leading-order result. What is usually referred to in the literature as being the leading

order result is Eq. (2.4), numerically integrated at a given value of the coupling (this is the

curve called “leading order” in Fig. 3): the correction becomes as large as this leading order

result when αs >∼ 0.04. This suggests that at that point perturbation theory starts to get into

trouble. For this reason, and as should be clearly suggested by the plot, we do not believe

that our calculation can be directly used as an “improvement” to the determination of κ in

the context of heavy ion collisions, where phenomenologically realistic values of the coupling

are in the range αs ∼ 0.3 − 0.5. Rather our results signal difficulties with the approach.

Nevertheless we would not like to sound overly pessimistic and conclude that our results

signal that no prediction beyond αs = 0.05 is possible. Rather, the real question now is how

large the higher order corrections are, and more pertinently, which parts of C may duplicate

themselves in higher-order terms, in some more or less predictable (and therefore resummable)

fashion.

Consider for instance the difference between the two lowest curves of Fig. 3, which is

attributable to C2→2, up to terms which are of yet higher order in the mD/T expansion of

Eq. (2.4). This contribution, which can be evaluated knowing only the tree-level matrix

elements with massless external states (and HTL corrections resummed on the exchanged

gluon), is better described as an “ambiguity” in the leading-order result rather than as a

correction to it. This ambiguity is large because the Coulomb scattering processes against

soft gluons (which give the small k contribution to Eq. (2.4)) are poorly described by the

leading term of an mD/T expansion. This is unrelated to the question of whether these

processes are correctly described by the right-hand side of κLO, which is the most pertinent
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The LO calculation



Looking at the diagrams
• Our starting point is the Wightman current-current 

correlator (with k0=k)

• At one loop (!EM g0):

Kinematically impossible to radiate an on-shell photon 
from on-shell quarks. Need something to kick one of 
the quarks (slightly) off-shell 

• Two separated phase space regions, 2↔2 and collinear

d�

d3k
=

e2

(2⇡)32k0

Z
d4Y e�iK·Y hJµ(Y )Jµ(0)i

Perturbative Analysis

Jµ =
∑

q=uds

eqq̄γ
µq : !"#$%!

"

Leading diagram:〈JJ〉 = !"#$%
&
'

(
)
%#$!"

Timelike K: pair production !"#$%##
$$

kinematically fine

Spacelike K: DIS
!#"$%

##$$
also kinematically OK

Lightlike K: on-shell quarks kinematically disallowed!
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LO diagrams:

1 loop O(αEM):

K

Kinematically disallowed for light-like K
(both quarks can’t be on-shell simultaneously)

2 loops O(αEMαs):

K K
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2

+crossingsP
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K
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• Two loop diagrams (!EM g2)

where the cuts correspond to the so-called 2↔2 
processes (with their crossings and interferences):

• IR divergence (Compton) when t goes to zero

The 2↔2 region
LO diagrams:

1 loop O(αEM):

K

Kinematically disallowed for light-like K
(both quarks can’t be on-shell simultaneously)

2 loops O(αEMαs):

K K

LO diagrams
Cut diagrams correspond to:

Compton scattering:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Pair annihilation:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Every time a scattering takes place, a quark can convert to a photon
⇒ For (K 2 = 0) t −→ 0, IR divergence:

D> ∝

∫

Λ2
IR

dq2
⊥

dσ

dq2
⊥

∝ ln

(
k0T

Λ2
IR

)

LO diagrams
Cut diagrams correspond to:

Compton scattering:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Pair annihilation:

t ∝

∫

dq2
⊥

dσ

dq2
⊥

Every time a scattering takes place, a quark can convert to a photon
⇒ For (K 2 = 0) t −→ 0, IR divergence:

D> ∝

∫

Λ2
IR

dq2
⊥

dσ

dq2
⊥

∝ ln

(
k0T

Λ2
IR

)



Leading order: Soft region Kapusta, Lichard, Seibert

Landau cut opens up phase space:

K

Soft spacelike quark

∝ ln

(
ΛUV

m∞

)

+#

Hard computation mangles the soft ∼ gT scale: IR divergence
Soft computation mangles the hard ∼ T scale: UV divergence
⇒ Dependence on cut off cancels in the sum

ln

(
Λ2

UV

m2
∞

)

+ #

︸ ︷︷ ︸

Soft: HTL

+ ln

(
k0T

Λ2
IR

)

︸ ︷︷ ︸

Hard: Bare

= ln

(
k0T

m2
∞

)

+ #

TgT

HTL Bare

UV/IR

• The IR divergence is the signal of missing IR physics and 
is cured by a proper resummation in the soft sector 
through the Hard Thermal Loop effective theory

• The Landau cut of the HTL propagator opens up the 
phase space in this (apparently one-loop) diagram

• In the end one obtains the result 

The dependence on the cutoff cancels out 
Kapusta Lichard Siebert PRD44 (1991) Baier Nakkagawa Niegawa Redlich ZPC53 (1992)

Introducing the soft scale

d��

d3k

����
2$2

/ e2g2

log

T

m1
+ C2$2

✓
k

T
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The collinear region
• Consider this simple power-counting argument:

• There is then an !EM probability of radiating a photon 

• The collinear enhancement brings these 
bremsstrahlung and pair annihilation diagrams to LO
Aurenche Gelis Kobes Petitgirard Zaraket 1998-2000

/ ↵2
s

Z
d2q?

s

(q2? +m2)2
⇠ ↵s

m ⇠ gT

s ⇠ T

g g

Figure 5. Collinear diagrams. In the first case, called the bremsstrahlung diagram, the angle
between the emitted photon and the outgoing emitting fermion is of order g. In the second case,
called the pair annihilation diagram, it is the angle between the annihilating quark and antiquark
that is of order g. The diagrams where the gluon is attached to the other fermionic line are not
show. In both cases the gluon is soft and is scattering on the hard constituents of the plasma, i.e.,
it is an HTL gluon in the Landau cut. In these diagrams the gluon is scattering o↵ light quarks
(the hard lines at the bottom). The corresponding case with gluons is not shown. {fig_collinear}

In terms of the two-point function these processes correspond to diagrams with the

two nearly collinear fermion lines connected with arbitrary number of soft spacelike gluons

with same kinematics as Q. In [14, 15] Arnold, Moore and Ya↵e (AMY) showed that it is

only the ladder-type diagrams shown in Fig. 6 that contribute to leading order calculation;

the factors of g arising from additional vertices are canceled by near on-shell propagators

and large statistical factors arising from the gluonic propagators. The near on-shellness of

the quark lines makes the diagrams sensitive to thermal mass m2
1 ⇠ g

2
T

2 and the thermal

width � ⇠ g

2
T of the quark lines, which need to be consistently resummed. Furthermore

AMY showed how these diagrams can be resummed in terms of a Schrödinger equation

type di↵erential equation, and they obtained the complete leading-order results in [15]. In

Sec. 3 we will discuss in detail this equation in the context of the treatment of its NLO

corrections.

d��

d3k

����
coll

= = Re

0

BBBBBBBBB@

1

CCCCCCCCCA

⇤ 0

BBBBBBBBB@

1

CCCCCCCCCA

Figure 6. The uncrossed ladder diagrams that need to be resummed to account for the LPM e↵ect
in the collinear region. The cut shown here corresponds to the interference term on the right-hand
side. The rungs on the l.h.s. are HTL gluons in the Landau cut. On the r.h.s., the crosses at the
lower hand of the gluons represent the hard scattering centers, either gluons or fermions. {fig_lpm}
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The collinear region: LPM effect

• Photon is collinear, 
spatial transverse size large
long separation (formation) time

• The interference with other scattering events cannot be 
neglected (scattering rate ~ g2T)

• This multiple scattering interference gives a suppression 
called the Landau-Pomeranchuk-Migdal (LPM) effect

Why ISR/FSR is Efficient

Photon emerges at a small O(g) angle, p⊥ ∼ gT

Transverse extent large ∆x⊥ ∼ p−1
⊥ ∼ 1/(gT )

Time to separate from quark is long, t ∼ ∆x⊥/θ ∼ 1/(g2T )

Approaching quark

wide transverse
Scattering

site

Outgoing quark

Wave packets overlap over
a long distance (Formation length)

Outgoing photonwave packet

Emission coherent over 1/g2T timescale.

BNL Photons: 5 December 2011: page 9 of 27

✓ ⇠ g p? ⇠ gT
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�1
?
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The LPM effect
• Introduced by Landau and Pomeranchuk (then 

Migdal) for QED in the 50’s

• Extended to photons in QCD in Baier Dokshitzer 
Mueller Peigne Schiff NPB478 (1996)

• Rigorous treatment and diagrammatics in AMY 
(Arnold Moore Yaffe) JHEP 0111, 0112, 0226 (2001-02)

• In the JJ correlator diagrams like

have to be resummed consistently

g g

Figure 5. Collinear diagrams. In the first case, called the bremsstrahlung diagram, the angle
between the emitted photon and the outgoing emitting fermion is of order g. In the second case,
called the pair annihilation diagram, it is the angle between the annihilating quark and antiquark
that is of order g. The diagrams where the gluon is attached to the other fermionic line are not
show. In both cases the gluon is soft and is scattering on the hard constituents of the plasma, i.e.,
it is an HTL gluon in the Landau cut. In these diagrams the gluon is scattering o↵ light quarks
(the hard lines at the bottom). The corresponding case with gluons is not shown. {fig_collinear}

In terms of the two-point function these processes correspond to diagrams with the

two nearly collinear fermion lines connected with arbitrary number of soft spacelike gluons

with same kinematics as Q. In [14, 15] Arnold, Moore and Ya↵e (AMY) showed that it is

only the ladder-type diagrams shown in Fig. 6 that contribute to leading order calculation;

the factors of g arising from additional vertices are canceled by near on-shell propagators

and large statistical factors arising from the gluonic propagators. The near on-shellness of

the quark lines makes the diagrams sensitive to thermal mass m2
1 ⇠ g

2
T

2 and the thermal

width � ⇠ g

2
T of the quark lines, which need to be consistently resummed. Furthermore

AMY showed how these diagrams can be resummed in terms of a Schrödinger equation

type di↵erential equation, and they obtained the complete leading-order results in [15]. In

Sec. 3 we will discuss in detail this equation in the context of the treatment of its NLO

corrections.
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d3k

����
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0
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1
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⇤ 0
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1
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Figure 6. The uncrossed ladder diagrams that need to be resummed to account for the LPM e↵ect
in the collinear region. The cut shown here corresponds to the interference term on the right-hand
side. The rungs on the l.h.s. are HTL gluons in the Landau cut. On the r.h.s., the crosses at the
lower hand of the gluons represent the hard scattering centers, either gluons or fermions. {fig_lpm}
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AMY resummation
• Define a dressed vertex determined by an integral 

equation

• The emission rate in the collinear region becomes

where 
and f is implicitly defined by

Resummation of Diagrams

Diagrams may be resummed by defining a dressed vertex,

+=

+ + . . .   =

determined by an integral equation (second line).

BNL Photons: 5 December 2011: page 14 of 27

Collinear region: AMY resummation Arnold, Moore, Yaffe

Splitting described by an integral equation:

= +

2p⊥ = iδE f(p⊥; p, k) +

∫
d2q⊥
(2π)2

C(q⊥)
[

f(p⊥) − f(p⊥ + q⊥)
]

dNγ

d3kd4x
=

2αEM

4π2k

∫
∞

−∞

dp

2π

∫
d2p⊥

(2π)2
nf (k + p)[1 − nf (p)]

2[p(p + k)]2

×
[

p2 + (p + k)2
]

Re

{

2p⊥ · f(p⊥; p, k)
}

1 NLO treatment of the collinear scattering regime

At leading order in αs the photon production rate arises from two distinct kinematic regimes;

when the photon line attaches to two fermionic lines which are nearly collinear and on-shell
(the collinear region), and when it attaches to two fermionic lines, one of which is on-shell

and one of which is far from on-shell (the 2 ↔ 2 region). Generically NLO corrections are
suppressed by a further power of αs, but this need not be the case if they involve soft gluons.
Therefore there can be NLO corrections anywhere that one of the leading-order regions is

sensitive to soft gluons, or in any corner of the phase space for these calculations which
contributes at O(g) and where the momentum on some line becomes soft.

Arnold, Moore, and Yaffe found [1, 2] that the collinear region gives rise to a photon
production rate of

(2π)3dΓγ

d3k
= A(k)

∫ ∞

−∞

dp

[

p2 + (p+ k)2

p2(p + k)2

]

nf (k + p)[1− nf (p)]

nf (k)

×
1

g2CfT 2

∫ d2p⊥

(2π)2
Re 2p⊥ · f(p⊥, p, k) , (1) {fpproblem}

2p⊥ = iδEf(p⊥) +
∫ d2q⊥

(2π)2
C(q⊥)

[

f(p⊥)− f(p⊥ + q⊥)
]

, (2) {qspace}

A(k) = αEM

g2CfT 2

2k
nf(k)

∑

s

dfq
2
s , (3) {A_of_k}

δE =
k(p2

⊥ +m2
∞)

2p(k + p)
. (4) {deltaE}

Here A(k) is the leading-log value of the photon production rate, C(q⊥) is the differential

soft scattering rate, and δE is the eikonalized energy difference between having a quark of
energy k + p and having a quark of energy p and a photon of energy k. And m2

∞ is the
asymptotic thermal mass of a light quark.

There are three places where O(g) corrections can enter this expression. First, O(g)
of the integral arises from the region where either p or p + k is small. (One may replace
∫∞
−∞ dp = 2

∫∞
−k/2 dp to eliminate the small p + k region and generally make life easier.) We

will not treat this region, as it is part of the “everybody soft” part of phase space. Instead

we concentrate on the other two places where O(g) corrections can enter: m2
∞ and C(q⊥).

1.1 NLO thermal mass

According to Caron-Huot [3], the thermal masses are given by

m2
D = 2g2CAZg + 4g2NfTfZf (5) {mD}

m2
∞ = g2Cf(Zg + Zf) (6) {minf}

Zg = 2
∫ d3p

Ep(2π)3
nb(Ep) $

T 2

6
−

TmD

2π
, (7) {Z_g}

Zf = 2
∫ d3p

Ep(2π)3
nf (Ep) $

T 2

12
. (8) {Z_f}
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Figure 10. Momentum regions contributing to the NLO calculation. The hard region does not
contribute at NLO. {fig_nlomap}

3 The collinear region
{sec_coll}

The evaluation of the collinear region at leading order requires the resummation of an

infinite number of soft gluon exchanges through an integral equation. Such an equation

was derived by Arnold, Moore, and Ya↵e [14, 15] and gives rise to a LO contribution to

photon production rate of

d��

d

3
k

����
coll

=
A(k)

(2⇡)3

Z 1

�1
dp

+


(p+)2 + (p++k)2

(p+)2(p++k)2

�
nF (k+p

+)[1� nF (p+)]

nF (k)

⇥ 1

g

2
CRT

2

Z
d

2
p?

(2⇡)2
Re 2p? · f(p?, p

+
, k) , (3.1) {fpproblem}

2p? = i�E f(p?) +

Z
d

2
q?

(2⇡)2
C(q?)

h
f(p?)� f(p?+q?)

i
, (3.2) {qspace}

�E =
k(p2? +m

2
1)

2p+(k+p

+)
. (3.3) {deltaE}

Here �E = Ep+k � Ep � k is the eikonalized energy di↵erence between having a quark of

energy corresponding to a momentum of k+p and having a quark of energy corresponding

to momentum p with a photon of energy k. C(q?) is the di↵erential soft scattering rate,

which at leading order reads [14, 26]

C(q?) = g

2
CR

Z
dq

0
dqz

(2⇡)2
2⇡�(q0 � qz)G

rr
µ⌫(Q)vµkv

⌫
k = g

2
CRT

m

2
D

q

2
?(q

2
?+m

2
D)

, (3.4) {C_LO}
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AMY resummation

• Two inputs

• Difference in energy after and before radiation

• Rate of soft  collisions through the collision kernel

relevance for jet quenching

Collinear region: AMY resummation Arnold, Moore, Yaffe

Splitting described by an integral equation:

= +

2p⊥ = iδE f(p⊥; p, k) +

∫
d2q⊥
(2π)2

C(q⊥)
[

f(p⊥) − f(p⊥ + q⊥)
]

dNγ

d3kd4x
=

2αEM

4π2k

∫
∞

−∞

dp

2π

∫
d2p⊥

(2π)2
nf (k + p)[1 − nf (p)]

2[p(p + k)]2

×
[

p2 + (p + k)2
]

Re

{

2p⊥ · f(p⊥; p, k)
}

�E = k0 + Ep � Ep+k ' k

p(k + p)

p2
? +m2

1
2

2.2 Application to Jet Evolution

The dominant energy loss mechanism of high energy particles (at weak coupling) is
bremsstrahlung (including quark-antiquark pair production), triggered by soft colli-
sions against plasma constituents. The theoretical description of these processes, at
the leading order in the coupling, is well-established [28] [29] [30]. Their duration tform
depends on the energy of the participants, and can interpolate between the Bethe-
Heitler (single scattering) regime tform ∼ E/q2⊥ ∼ E/m2

D at energies E <
∼ T , and the

Landau-Pomeranchuk-Migdal (LPM) [31] (multiple-scattering) regime at high ener-
gies E " T , with tform ∼

√

E/q̂, in which destructive interference between different
collisions plays a significant role.

In all of these regimes, however, the description factors into a “hard” collinear split-
ting vertex (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi, DGLAP vertex [33]), times an
amplitude (wavefunction in the transverse plane) which describes the in-medium evo-
lution of the vertex. The latter accounts for the collisions which trigger, and occur
during, the splitting process [28] [29] [30]. The DGLAP vertices themselves only in-
volves hard scale physics (in essence, they are Clebsch-Gordon coefficients between
states of different helicities) and thus cannot receive O(g) corrections; the NLO ef-
fects, which come from soft classical fields with p ∼ gT , are included in their dressing
amplitude.

In section 6 we discuss these amplitudes at NLO and show that the relevant (three-
body) collision kernel factors as a sum of two-body kernels C(q⊥), exactly like the LO
one does [28] [29] [30, 32]. As a consequence, our results can be used to give a full NLO
treatment of radiative jet energy loss; one must simply include the NLO shift (20) to
the two-body kernel C(q⊥) which serves as an input to these calculations2.

2.3 Momentum broadening coefficient (q̂)

When the effects of a large number of small collisions are added together, it is natural
to replace them by an effective diffusive process. The diffusion coefficient relevant for
transverse momentum broadening, q̂, is defined as the second moment of the collision
kernel (1):

q̂ ≡
∫ qmax

0

d2q⊥
(2π)2

q2⊥C(q⊥). (2)

The ultraviolet cutoff |q⊥| < qmax is needed to deal with the weak power-law falloff
C(q⊥) ∼ g4T 3/q4⊥ at large q⊥, which leads to a logarithmic dependence of q̂ on qmax.
This is a leading order logarithm; below we shall comment on the value of the cutoff
qmax. Using our NLO kernel (20) we can calculate the expansion of q̂ up to terms of

2 For instance, one would simply modify “C(q⊥)” in [32], which is actually equal to C(q⊥)/(g2CsT )
in our conventions.

4

Collinear region: AMY resummation Arnold, Moore, Yaffe

Splitting described by an integral equation:

= +

2p⊥ = iδE f(p⊥; p, k) +

∫
d2q⊥
(2π)2

C(q⊥)
[

f(p⊥) − f(p⊥ + q⊥)
]

Takes two inputs:
1 Dispersion relations of splitter and splittee

δE ≈ k0 − E (k − p) − E (p) = −

[
k

p(k + p)

p2
⊥

+ m2
∞

2

]

2 Rate of soft collisions: Collision kernel

C(q⊥) =
dΓ

dq2
⊥

∼ g2T
m2

D

q2
⊥
(q2

⊥
+ m2

D)
∝

⇒



Full LO results
• Numerically solving the implicit equation for the collinear region 

yields the full LO results for the thermal photon production rate

Arnold Moore Yaffe JHEP0112 (2001)

(2⇡)3
d�

d3k

����
LO

= A(k)


log

T

m1
+ C2!2(k) + Ccoll(k)

�

1 NLO treatment of the collinear scattering regime

At leading order in αs the photon production rate arises from two distinct kinematic regimes;

when the photon line attaches to two fermionic lines which are nearly collinear and on-shell
(the collinear region), and when it attaches to two fermionic lines, one of which is on-shell

and one of which is far from on-shell (the 2 ↔ 2 region). Generically NLO corrections are
suppressed by a further power of αs, but this need not be the case if they involve soft gluons.
Therefore there can be NLO corrections anywhere that one of the leading-order regions is

sensitive to soft gluons, or in any corner of the phase space for these calculations which
contributes at O(g) and where the momentum on some line becomes soft.

Arnold, Moore, and Yaffe found [1, 2] that the collinear region gives rise to a photon
production rate of

(2π)3dΓγ

d3k
= A(k)

∫ ∞

−∞

dp

[

p2 + (p+ k)2

p2(p + k)2

]

nf (k + p)[1− nf (p)]

nf (k)

×
1

g2CfT 2

∫ d2p⊥

(2π)2
Re 2p⊥ · f(p⊥, p, k) , (1) {fpproblem}

2p⊥ = iδEf(p⊥) +
∫ d2q⊥

(2π)2
C(q⊥)

[

f(p⊥)− f(p⊥ + q⊥)
]

, (2) {qspace}

A(k) = αEM
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2k
nf(k)

∑

s

dfq
2
s , (3) {A_of_k}

δE =
k(p2
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∞)

2p(k + p)
. (4) {deltaE}

Here A(k) is the leading-log value of the photon production rate, C(q⊥) is the differential

soft scattering rate, and δE is the eikonalized energy difference between having a quark of
energy k + p and having a quark of energy p and a photon of energy k. And m2

∞ is the
asymptotic thermal mass of a light quark.

There are three places where O(g) corrections can enter this expression. First, O(g)
of the integral arises from the region where either p or p + k is small. (One may replace
∫∞
−∞ dp = 2

∫∞
−k/2 dp to eliminate the small p + k region and generally make life easier.) We

will not treat this region, as it is part of the “everybody soft” part of phase space. Instead

we concentrate on the other two places where O(g) corrections can enter: m2
∞ and C(q⊥).

1.1 NLO thermal mass

According to Caron-Huot [3], the thermal masses are given by

m2
D = 2g2CAZg + 4g2NfTfZf (5) {mD}

m2
∞ = g2Cf(Zg + Zf) (6) {minf}

Zg = 2
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TmD
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, (7) {Z_g}
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Full LO results
• Numerically solving the implicit equation for the collinear region 

yields the full LO results for the thermal photon production rate

Arnold Moore Yaffe JHEP0112 (2001)

Result: Thermal Medium
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Going to NLO



Sources of NLO corrections

• As usual in thermal field theory, the soft scale gT 
introduces NLO O(g) corrections

• The soft region and the collinear region both receive 
O(g) corrections

• There is a new semi-collinear region

• The NLO calculation is still not sensitive to the 
magnetic scale g2T. Ideas for NNLO?
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Euclideanization of light-cone soft 
physics

• For v=xz/t=∞ correlators (such as propagators) are the 
equal time Euclidean correlators.

• Boost invariance: true for v>1. For soft fields the v→1+  

limit is smooth (feeling the medium in uncorrelated, 
eikonalized way)

• The sums are dominated by the zero mode for soft 
physics=>EQCD!

• Equivalent to sum rules Caron-Huot PRD79 (2009)
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PZ

p

GE(!n, p)e
ip·x

G

rr

(t = x

z

,x?) =
PZ

p

G

E

(!
n

, p?, pz + i!

n

)ei(p?·x?+pzxz)



Soft sensitivity and subtractions
• Consider the asymptotic mass for a fermion (a not-so-

randomly chosen example). The dispersion relation 
approaches                           for

• At leading order

p0 ⇡ p � gTp20 = p2 +m2
1
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Soft sensitivity and subtractions
• Consider the asymptotic mass for a fermion (a not-so-

randomly chosen example). The dispersion relation 
approaches                           for

• At leading order
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NLO asymptotic mass
• The soft contribution is large and handled incorrectly. This 

part of the integrand needs to be subtracted and replaced 
by a proper evaluation with HTL

• NLO correction computed in Caron-Huot PRD79 (2009) 
with Euclidean techniques
�m2

1 = 2g2CRT

Z
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Light-cone condensates
• Asymptotic mass Caron-Huot PRD79 (2009)

• "E-dependent qhat 

For "E→0 the definition by audience members is recovered
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• The AMY resummation equation is

 

• Four sources of O(g) corrections

• p+~gT or p++k~gT. Mistreated soft limit

•                                 . Mistreated semi-collinear limit

• The two inputs in the integral equation,       and
receive O(g) corrections. The former we know about.

The collinear sector
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Figure 10. Momentum regions contributing to the NLO calculation. The hard region does not
contribute at NLO. {fig_nlomap}

3 The collinear region
{sec_coll}

The evaluation of the collinear region at leading order requires the resummation of an

infinite number of soft gluon exchanges through an integral equation. Such an equation

was derived by Arnold, Moore, and Ya↵e [14, 15] and gives rise to a LO contribution to

photon production rate of
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Here �E = Ep+k � Ep � k is the eikonalized energy di↵erence between having a quark of

energy corresponding to a momentum of k+p and having a quark of energy corresponding

to momentum p with a photon of energy k. C(q?) is the di↵erential soft scattering rate,

which at leading order reads [14, 26]
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The NLO collision kernel

• At the LO only (a) has been used as a rung in the 
AMY ladder resummation. At the NLO all these 
diagrams have to be evaluated at the soft scale 
(remember that the quark lines are on the light cone)

• This calculation has been carried out in Caron-Huot 
PRD79 (2009) using Euclidean technology

How reliable are LO Calculations?

Bad news 1: first corrections are O(g), not O(αs)

Soft gluons involved! Loop gives αs and Bose factor ∼ T/gT ∼ 1/g

And there are a lot of O(g) corrections!

(d)(c)(b)(a) (e) (f) (g)

LO requires using (a) as rung. NLO requires all!

Bad news 2: O(g) coefficient likely to be large!

NLO Not Computed! But similar computation for heavy quarks

indicate large O(g) NLO corrections. Similar to pressure at

O(g2), O(g3), possibly for similar reasons

BNL Photons: 5 December 2011: page 19 of 27



Subtraction  regions

• For small p

• This then implies

• The AMY equation can be solved analytically by 
substitution (single-scattering regime), yielding

�E =
k

p(k + p)
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2
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1
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Collinear region: AMY resummation Arnold, Moore, Yaffe

Splitting described by an integral equation:

= +
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Part of diagram (f) is already included by the exponentiation of (10) (diagram (a)):
this generates the approximation to (f) in which the intermediate eikonal propagators
are put on-shell. To avoid double-counting, this must be subtracted. We must first
regulate the associated “pinching” (qz → 0) singularity, which we do by flowing a small
external z-momentum ω into the Wilson loop. We then take the limit ω → 0 after the
subtraction. Diagram (g) poses no difficulty.
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Eq. (16) has a well-defined ω → 0 limit, as follows from the identity 1/(pz+iε −
1/(pz−iε) = −2πiδ(pz). This limit takes a form identical to (17) and the sum is
proportional to CA, again as required by abelian exponentiation. This confirms the
correctness of our evaluation of (f).

The sum of diagrams (d)-(g) yields:
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The function G̃++ is G̃00 + G̃zz, as given in eq. (8). To evaluate (18) we have found
convenient to first apply integration by parts to the 1/(pz−iε)2 denominator, which re-
moves the explicit pz-dependence and reduces the integral to a set of standard isotropic
Feynman integrals. Eq. (18) is manifestly infrared- (and ultraviolet-) safe, upon enforc-
ing p ↔ (q⊥−p) symmetry.

4.5 Final formulae

In summary, we have obtained all O(g) contributions to the collision kernel C(q⊥):
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3 The collinear region
{sec_coll}

The evaluation of the collinear region at leading order requires the resummation of an

infinite number of soft gluon exchanges through an integral equation. Such an equation

was derived by Arnold, Moore, and Ya↵e [14, 15] and gives rise to a LO contribution to
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• The contribution from the NLO asymptotic mass and 
scattering kernel is then to be solved for numerically. 

• Going into impact parameter space is useful: integral 
equation ⇒ differential equation 
Aurenche Gelis Moore Zaraket JHEP0212 (2002)

•  The results for the numerical solution of the collinear 
region can be written in this form
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The soft sector



Fermionic sum rules
• We have found the fermionic analogue of the AGZ sum 

rule

• The leading-order soft contribution (P fully soft)

where S(P ) =
1

2

⇥
(�0 � ~� · p̂)S+(P ) + (�0 + ~� · p̂)S�(P )

⇤

Evaluation of the fully-soft contribution to the photon rate

May 4, 2012

1 Definitions and conventions

Throughout this document, uppercase letters are four-vectors and lowercase ones are three-
vectors. The metric is (�+++).
The photon production rate is given by
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My conventions for the HTL propagators are the following. The retarded fermion propagator
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where the upper sign refers to the positive helicity component and vice versa. The helicity
projectors are h

±
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Gluons are described in the strict Coulomb gauge by
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2 Leading-order evaluation and introduction to the light-
cone sum rules

The quark tensor W in Eq. (1) becomes, at the zeroth order in g,
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Fermionic sum rules
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Fermionic sum rules

• A retarded propagator is an analytic function of Q in the 
upper half-plane not just in the frequency, but in any 
time-like or light-like variable
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Fermionic sum rules

• A retarded propagator is an analytic function of Q in the 
upper half-plane not just in the frequency, but in any 
time-like or light-like variable

• Deform the contour away from the real axis
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Fermionic sum rules

• A retarded propagator is an analytic function of Q in the 
upper half-plane not just in the frequency, but in any 
time-like or light-like variable

• Deform the contour away from the real axis
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Fermionic sum rules

• A retarded propagator is an analytic function of Q in the 
upper half-plane not just in the frequency, but in any 
time-like or light-like variable

• Deform the contour away from the real axis
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Fermionic sum rules

• Along the arcs at large complex p+ the integrand has a 
very simple behavior
Tr

⇥
��(SR(P )� SA(P )

⇤
p�=0

=
i

p+
m2

1
p2? +m2

1
+O

✓
1

(p+)2

◆

(2⇡)3
d��

d3k
soft

/
Z

dp+ d2p?
(2⇡)3

Tr
⇥
��(SR(P )� SA(P ))

⇤
p�

=0



Fermionic sum rules

• Along the arcs at large complex p+ the integrand has a 
very simple behavior

• The integral then gives simply
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Fermionic sum rules

• Along the arcs at large complex p+ the integrand has a 
very simple behavior

• The integral then gives simply

• The       integral is UV-log divergent, giving the LO UV-
divergence that cancels the IR divergence at the hard 
scale, now analytically
Independently obtained by Besak Bödeker JCAP1203 (2012)
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The NLO soft region

• At NLO one can use the KMS relations and the ra basis to 
write the diagrams in terms of fully retarded and fully 
advanced functions of P. The hard only depend on p-.

• The contour deformations are then again possible and the 
diagrams can be expanded for large complex p+. On general 
grounds we expect
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that the structure of the NLO correction arising from the collinear region is then
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where the first term is due to O(g) shift in m

2
1 and the in the second term they arise from

considering one-loop soft rungs rather than tree-level ones in the ladder resummation.

In the soft region, the addition of an extra soft gluon to the diagram in Fig. 4 results in

the diagrams shown in Fig. 8, which represent an O (g) correction. In particular, wherever

Figure 8. Diagrams contributing to the NLO fully soft rate. The black blobs are bare+HTL
vertices, plain lines and gluons are soft. We call these four diagrams, from left to right, the soft-soft
self-energy, the tadpole, the hard-soft self-energy and the cat eye. {fig_nlo_soft}

a gluon ends on a soft fermion line, all momenta flowing in that quark-gluon vertex are of

order gT . This causes the bare and HTL vertices to be of the same order, requiring the

inclusion of the HTL vertex, as shown in the first and last diagrams in Fig. 8. Furthermore,

the two-quark, two-gluon HTL gives rise to a new topology, the second diagram in that

figure.

The complicated analytic structure of the HTL vertices and propagators, with their

branch cuts and imaginary parts, as well as the non-trivial functional dependence on the

momenta, would in principle make the calculation of the diagrams in Fig. 8 technically

intricate and only amenable to a multi-dimensional numerical integration. However in

Sec. 4 we develop a set of sum rules, based on these amplitudes’ analyticity properties in

the complex plane, which are in turn related to causality. These sum rules, as we shall

show, simplify the calculation dramatically, leading to an analytical result.

The first diagram in Fig. 8 is the soft limit of the self-energy included in the soft leading-

order calculation, see Fig. 4. The HTL self-energy used in the leading-order calculation

includes an integral over this loop momentum which extends down to zero, with O(g) of

the contribution arising from O(g) loop momenta. Therefore, the first diagram in Fig. 8

has already been included – in fact mistreated, since a Q � P approximation is performed

where it is not applicable – in the leading-order calculation. Therefore we have to subtract

this soft-loop part of the HTL calculation to avoid double counting and to correct this

mistreatment. We do this by subtracting a counterterm diagram shown in Figure 9.

Similarly, in the calculation of the leading order collinear rate, an O(g) part of p+

integration arises from the kinematical region where p

+ is soft and so overlaps with the

soft kinematic region. This contribution is correctly dealt with by the soft contribution,

and the mistreated LO contribution must be subsequently subtracted. The structure of
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The soft region
• The (1/p+)0  term has to be exactly the subtraction term we have 

seen before in the collinear region, to cancel the cutoff 
dependence. Confirmed by explicit calculation

• At order 1/p+ we had the LO result. We can expect

The explicit calculation finds just this contribution.

• The contribution from HTL vertices goes like (1/p+)2 or smaller 
on the arcs.
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The soft region
• Once the divergent part is subtracted the soft contribution 

is

• UV log-divergence has to cancel with the semi-collinear 
region, where 

(2⇡)3
d���

d3k

����
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= A(k)
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1
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Z
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1)2
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Light-cone condensates
• Asymptotic mass Caron-Huot PRD79 (2009)

• "E-dependent qhat 

For "E→0 the definition by audience members is recovered
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The semi-collinear region

• Kinematical regions ⇒ different processes

• Q timelike ⇒ 2↔2 processes with massive (plasmon) gluon

• Q spacelike  ⇒ 2↔3 processes: wider-angle 
bremsstrahlung and pair annihilation, no LPM interference

K + P

K

P +Q

Q

P semi-collinear
Q soft



The semi-collinear region
• Subtraction term from the collinear region

• Proper evaluation: replace

with

because "E~gT  is no longer negligible

• The latter object too can be evaluated in Euclidean spacetime

into Eq. (3.7) we obtain

Z
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2p? · f2(p?) = 8(p+)2

Z
d

2
q?d

2
p?

(2⇡)4
C(q?)

✓
p?

p

2
?+m

2
1

� p?+q?
(p?+q?)2 +m

2
1

◆2

.

(3.10)

In terms of p

+ scaling, we see that Eq. (3.2) gives (p+)2 times a p

+-independent

function. This cancels the (p+)�2 in the integrand in Eq. (3.8), so indeed the integrand in

Eq. (3.8) is independent of p+ at small p+. Since p

+ ⇠ gT represents O(g) of the phase

space of p+ values available, this region therefore represents an O(g) fraction of the photon

production rate, as claimed.

The region where p

++k is soft gives an identical contribution. Inserting 2f2 into

Eq. (3.8) we then get
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, (3.11) {divergent_bit}

where we introduced a regulator gT ⌧ µ

+ ⌧ T for the linear divergence.

3.1.2 The semi-collinear fermion, collinear contribution {sub_coll_semicollin}
The semi-collinear region represents another O(g) contribution to the integral in Eq. (3.1).

As in the previous case, the approximations that lead to that equation are no longer valid

when P becomes semi-collinear (p? ! p
gT , p� ⇠ gT ). This limit is then incorrectly

described by Eq. (3.1) and, as in the previous subsection, we need to derive its limit in

order to subtract it from the semi-collinear region, where this momentum scaling will be

correctly treated.

We can again use Eq. (3.7), but now there is an additional simplification; p2? � m

2
1

and |p?| � |q?|. Therefore we can drop m

2
1 and work to lowest order in q?, which is
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When plugged in Eq. (3.1), this yields

d���

d

3
k

����
coll subtr.

semi�coll

= 2
A(k)

(2⇡)3

Z
dp

+


(p+)2 + (p+ + k)2

(p+)2(p+ + k)2

�
nF (k + p

+)[1� nF (p+)]

nF (k)

⇥ 1

g

2
CRT

2

Z
d

2
p?

(2⇡)2
4(p+)2(p+ + k)2

k

2
p

4
?

Z
d

2
q?

(2⇡)2
q

2
? C(q?) . (3.13) {colltosemi}

The p? integration is power p? divergent and the q? integral is log UV divergent. This is

not surprising, since this expression was obtained based on q? ⌧ p?.
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Light-cone condensates
• Asymptotic mass Caron-Huot PRD79 (2009)

• "E-dependent qhat 

For "E→0 the definition by audience members is recovered
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The semi-collinear region

• Limits and divergences

↑                                   subtract the hard limit

↓               subtract the collinear limit  (                 ) 

↙                        IR log, combines with UV soft log (NLO log)

• Aside from the IR-log, the general behaviour of the P 
integration can only be obtained numerically.

K + P

K

P +Q

Q

P semi-collinear
Q soft

p? ! 0

p? ! 0 ^ p+ ! 0

p? � q?

p? ! 1 (�E ! 1)



Kandinsky, Klee & Kurkela
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Figure 10. Momentum regions contributing to the NLO calculation. The hard region does not
contribute at NLO. {fig_nlomap}

3 The collinear region
{sec_coll}

The evaluation of the collinear region at leading order requires the resummation of an

infinite number of soft gluon exchanges through an integral equation. Such an equation

was derived by Arnold, Moore, and Ya↵e [14, 15] and gives rise to a LO contribution to

photon production rate of

d��

d
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i
, (3.2) {qspace}

�E =
k(p2? +m

2
1)

2p+(k+p

+)
. (3.3) {deltaE}

Here �E = Ep+k � Ep � k is the eikonalized energy di↵erence between having a quark of

energy corresponding to a momentum of k+p and having a quark of energy corresponding

to momentum p with a photon of energy k. C(q?) is the di↵erential soft scattering rate,

which at leading order reads [14, 26]
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Summary 
• LO rate

• NLO correction
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Figure 18. (a) The function, C(k/T ), parametrizing the photon emission rate for Nc = Nf = 3
and ↵s = 0.3 (see Eq. (6.8) and Eq. (2.9)). The full next to leading order function (CLO+NLO) is
a sum of the leading order result (CLO), a collinear correction (�Ccoll), and a soft+semi-collinear
correction (�Csoft+sc). The dashed curve labeled CLO + �Ccoll shows the result when only the
collinear correction is included, with the analogous notation for the CLO + �Csoft+sc curve. The
di↵erence between the dashed curves provides a uncertainty estimate for the NLO calculation. (b)
The same as (a) but for larger k/T . {plot_c_30_1}

Finally, we recall that A(k) and  are given in Eqs. (2.9) and (2.10) and �m

2
1/m

2
1 =

�2mD/(⇡T ), as given by Eq. (3.27). The correction C

�C
coll is intrinsically nonabelian, but

�m

2
1/m

2
1 is nonvanishing in an Abelian theory.

We now plot our results. Let us define
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Given those definitions, it then follows that
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In Fig. 18, we start by plotting the function CLO+NLO(k/T ) for ↵s = 0.3 and Nc =

Nf = 3. In the phenomenologically interesting momentum range, k/T ⇠ 10, the collinear

and semi-collinear+soft corrections largely cancel, leading to a small positive correction

of order ⇠ 15% (Fig. 18(a)). At large momentum, k/T

>⇠ 20, the LO and LO+NLO

curves cross and the NLO correction turns negative (Fig. 18(b)). We believe that the
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Figure 18. (a) The function, C(k/T ), parametrizing the photon emission rate for Nc = Nf = 3
and ↵s = 0.3 (see Eq. (6.8) and Eq. (2.9)). The full next to leading order function (CLO+NLO) is
a sum of the leading order result (CLO), a collinear correction (�Ccoll), and a soft+semi-collinear
correction (�Csoft+sc). The dashed curve labeled CLO + �Ccoll shows the result when only the
collinear correction is included, with the analogous notation for the CLO + �Csoft+sc curve. The
di↵erence between the dashed curves provides a uncertainty estimate for the NLO calculation. (b)
The same as (a) but for larger k/T . {plot_c_30_1}
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2
1/m

2
1 =

�2mD/(⇡T ), as given by Eq. (3.27). The correction C

�C
coll is intrinsically nonabelian, but

�m

2
1/m

2
1 is nonvanishing in an Abelian theory.

We now plot our results. Let us define

CLO

✓
k

T

◆
⌘ ln

✓
T

m1

◆
+ C2$2

✓
k

T

◆
+ C

LO
coll

✓
k

T

,

◆
, (6.4) {defclo}

�Csoft+sc

✓
k

T

◆
⌘ �m

2
1

m

2
1


ln

✓p
2TmD

m1

◆
+ Csoft+sc

✓
k

T

◆�
, (6.5) {defcsoftsc}

�C

✓
k

T

◆
⌘ �Ccoll

✓
k

T

◆
+ �Csoft+sc

✓
k

T

◆
, (6.6) {defdeltac}

CLO+NLO

✓
k

T

◆
⌘ CLO

✓
k

T

◆
+ �C

✓
k

T

◆
. (6.7) {defcnlo}

Given those definitions, it then follows that

(2⇡)3
d��

d

3
k

����
LO

= A(k)CLO

✓
k

T

◆
, (2⇡)3

d��

d

3
k

����
LO+NLO

= A(k)CLO+NLO

✓
k

T

◆
. (6.8) {gammanlo}

In Fig. 18, we start by plotting the function CLO+NLO(k/T ) for ↵s = 0.3 and Nc =

Nf = 3. In the phenomenologically interesting momentum range, k/T ⇠ 10, the collinear

and semi-collinear+soft corrections largely cancel, leading to a small positive correction

of order ⇠ 15% (Fig. 18(a)). At large momentum, k/T

>⇠ 20, the LO and LO+NLO

curves cross and the NLO correction turns negative (Fig. 18(b)). We believe that the
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Figure 19. The functions C(k/T ) for Nc = 3, Nf = 3 as in Fig. 18, but for ↵s = 0.05. {plot_c_5_1}
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Figure 20. (a) The di↵erential rate d��/dk relative to the leading order rate as a function of k/T
(or equivalently CLO+NLO/CLO). The full next to leading order rate (LO+NLO) is a sum of the
leading order rate (LO), a collinear correction (coll), and a soft+semi-collinear correction (soft+sc).
The dashed curve labeled LO+coll shows the ratio of rates when only the collinear correction is
included, with the analogous notation for the LO+ soft+sc curve. The di↵erence between the
dashed curves provides a uncertainty estimate for the NLO calculation. (b) The same as (a) but
for larger k/T . {plot_ratio}

large cancellations we observe are rather accidental, and one should thus consider the

curves CLO(k/T ) + �Ccoll(k/T ) and CLO(k/T ) + �Csoft+sc(k/T ) as upper and lower limits

respectively of an “uncertainty estimate” of the NLO calculation.

In Fig. 19 we plot CLO+NLO(k/T ) and CLO(k/T ) for ↵s = 0.05, and Nc = 3, Nf = 3.

For the smaller coupling constant the NLO correction is always negative and rather flat,

and the magnitude of the two largely canceling contributions is also significantly smaller

than in the previous case.
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Figure 21. The di↵erential rate, d��/dk, relative to the leading order rate as described in Fig. 20,
but for ↵s = 0.05. {plot_ratio_05}

In Figs. 20 and 21 we plot the di↵erential photon emission rates d��/dk relative to the

leading order rate, (LO+ NLO)/LO, for two di↵erent values of the coupling constant. The

reasonable, but somewhat ad hoc, “uncertainty estimate” described above can be inferred

from the di↵erence between the upper and lower dashed curves, which include either the

collinear or the soft+semi-collinear correction, but not both.

For the largest coupling, ↵s = 0.3, NLO corrections are modest and positive, although

the “uncertainty band” is rather large – of order 50% (see Fig. 20). At intermediate

coupling, ↵s = 0.15, the cancellation between the collinear and semi-collinear+soft contri-

butions is quite dramatic, causing the LO+NLO result to be within a few percent of the

LO rate (not shown). Nevertheless, the uncertainty band remains rather large – of order

40%. Finally, at the smallest coupling ↵s = 0.05, the (LO+NLO)/LO ratio is somewhat

larger than at intermediate coupling, but with a considerably smaller uncertainty band

(Fig. 21).

7 Conclusions
{sec_concl}

We have computed the photon production rate to NLO of an equilibrated, weakly-coupled

quark-gluon plasma. The contributions to the LO rate can be divided into distinct kine-

matical regimes — the hard, soft and collinear regions. The contributions arising from the

hard and the soft regions have logarithmic sensitivity to the details of how the kinematical

regions are divided. However, this dependence cancels in the sum. At NLO the soft and

collinear regions receive O(g) corrections, and a new “semi-collinear” region starts to con-

tribute here. We have dealt with the collinear region in Sec. 3, with the soft region in 4,

and with the semi-collinear region in 5.

The collinear regime is a↵ected by the LPM interference of multiple scatterings through

the integral equation (3.1). As we showed, computations are most easily performed in

impact parameter space and the resulting O(g) perturbation to the LO result is given
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Conclusions

• The NLO contribution is made of four terms, with a 
semicollinear/soft log (~g1/2)

• These four terms combine in two large and opposite 
contributions that largely cancel giving a relatively small NLO 
correction. Is the cancellation accidental? At !s=0.3 the NLO is 
initially positive, then turns negative and keeps growing at 
large k/T . At small !s (!s=0.05) the correction is always 
negative

• In the phenomenologically interesting window up to  the 
NLO correction is 10%-20% for !s=0.3
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Conclusions
• Contrary to the heavy-quark diffusion case, here we 

probe soft fields at light-like separations. After a few 
headaches, it turns out this is computationally easier 
and better convergent

• Light-cone sum rules are a powerful instrument. Is 
there a Euclidean picture for fermions too?

• Finding out  that there is a bridge is as important as 
being able to go to the other side. Other applications 
for it? Tackling new NLO calculations?


