Thermal photon rate at next-to-leading order

Jacopo Ghiglieri, McGill University in collaboration with J. Hong, E. Lu, A. Kurkela, G. Moore, D. Teaney Munich, March 12013

Outline

- Introduction and motivation
- The leading-order calculation
- NLO regions and divergences
- Light-cone magic
- Results

JG Hong Kurkela Lu Moore Teaney 1302.5970

Photons from heavy ion collisions

- The hard partonic processes in the heavy ion collision produce quarks, gluons and primary photons
- At a later stage, quarks and gluons form a plasma.
- A jet traveling through the QGP can radiate jet-thermal photons
- Scatterings of thermal partons can produce thermal photons
- Later on, partons hadronize. Interactions between charged hadrons produce hadron gas thermal photons
- Hadrons may decay into decay photons

Thermal photons

- $\alpha_{E M}<1 \Rightarrow$ re-interactions negligible "Photons escape from the plasma"
- Thermal photons might then be a good hard probe of QGP properties
- The resulting spectrum is not a blackbody spectrum with some T_{QGP}

Thermal photons

van Hees, Gale, Rapp PRC84 (2011)

Thermal photon production

- Single-photon production probability

$$
2 k^{0}(2 \pi)^{3} \frac{d \operatorname{Prob}}{d^{3} k}=\sum_{X} \operatorname{Tr} \rho U^{\dagger}(t)|X, \gamma\rangle\langle X, \gamma| U(t)
$$

- Expand the time evolution operator

$$
U(t)=1-i \int^{t} d t^{\prime} \int d^{3} x e A^{\mu}\left(x, t^{\prime}\right) J_{\mu}\left(x, t^{\prime}\right)+\mathcal{O}\left(e^{2}\right)
$$

- Assume translation invariance

$$
\frac{d \text { Prob }}{d^{3} k}=\frac{V t e^{2}}{(2 \pi)^{3} 2 k^{0}} \int d^{4} Y e^{-i K \cdot Y} \sum_{X} \operatorname{Tr} \rho J^{\mu}(Y)|X\rangle\langle X| J_{\mu}(0)
$$

- $V t$ is the pos. space volume \Rightarrow get the rate

$$
\frac{d \Gamma}{d^{3} k}=\frac{e^{2}}{(2 \pi)^{3} 2 k^{0}} \int d^{4} Y e^{-i K \cdot Y}\left\langle J^{\mu}(Y) J_{\mu}(0)\right\rangle
$$

Wightman correlator of the e.m. current-current thermal expectation value (with $k^{0}=k$). Our operative definition, with $k \sim T$, always hard

- The production rate is known at leading order $\alpha_{\mathrm{EM}} \alpha_{\mathrm{S}}$ (more later)
- An NLO $\left(\alpha_{\mathrm{Em}} g^{3}\right)$ determination
- Improve the phenomenological analyses, if not by giving reliable theory error bands
- On the theory side, show if the pattern of large NLO corrections in transport coefficients is reproduced
- A posteriori: pattern for other NLO transport calculations

NLO transport coefficients

- The only transport coefficient known so far at NLO is the heavy quark momentum diffusion coefficient, which is defined through the noise-noise correlator in a Langevin formalism. In field theory it can be written as

$$
\kappa=\frac{g^{2}}{3 N_{c}} \int_{-\infty}^{+\infty} d t \operatorname{Tr}\left\langle U(t,-\infty)^{\dagger} E_{i}(t) U(t, 0) E_{i}(0) U(0,-\infty)\right\rangle
$$

- The NLO computation factors in the coefficient C , which turns out to be sizeable

$$
\kappa=\frac{C_{H} g^{4} T^{3}}{18 \pi}\left(\left[N_{\mathrm{c}}+\frac{N_{\mathrm{f}}}{2}\right]\left[\ln \frac{2 T}{m_{D}}+\xi\right]+\frac{N_{\mathrm{f}} \ln 2}{2}+\frac{N_{\mathrm{c}} m_{D}}{T} C+\mathcal{O}\left(g^{2}\right)\right) \quad \xi=\frac{1}{2}-\gamma_{E}+\frac{\zeta^{\prime}(2)}{\zeta(2)}
$$

Caron-Huot Moore PRL100, JHEP0802 (2008)

NLO transport coefficients

The LO calculation

Looking af the diagrams

- Our starting point is the Wightman current-current correlator (with $k^{0}=k$)

$$
\frac{d \Gamma}{d^{3} k}=\frac{e^{2}}{(2 \pi)^{3} 2 k^{0}} \int d^{4} Y e^{-i K \cdot Y}\left\langle J^{\mu}(Y) J_{\mu}(0)\right\rangle \quad J^{\mu}=\sum_{q=u d s} e_{q} \overline{\gamma^{\mu}} q: \backsim
$$

- At one loop ($\alpha_{\mathrm{Em}} g^{0}$):

Kinematically impossible to radiate an on-shell photon from on-shell quarks. Need something to kick one of the quarks (slightly) off-shell

- Two separated phase space regions, $2 \leftrightarrow 2$ and collinear

+ crossings

$$
P=\left(p^{+}, p^{-}, p_{\perp}\right)
$$

The $2 \leftrightarrow 2$ region

- Two loop diagrams $\left(\alpha_{\mathrm{EM}} g^{2}\right)$

where the cuts correspond to the so-called $2 \leftrightarrow 2$ processes (with their crossings and interferences):

- IR divergence (Compton) when t goes to zero

Introducing the soft scale

- The IR divergence is the signal of missing IR physics and is cured by a proper resummation in the soft sector through the Hard Thermal Loop effective theory
- The Landau cut of the HTL propagator opens up the phase space in this (apparently one-loop) diagram

- In the end one obtains the result

$$
\left.\frac{d \Gamma_{\gamma}}{d^{3} k}\right|_{2 \leftrightarrow 2} \propto e^{2} g^{2}\left[\log \frac{T}{m_{\infty}}+C_{2 \leftrightarrow 2}\left(\frac{k}{T}\right)\right]
$$

The dependence on the cutoff cancels out

The collinear region

- Consider this simple power-counting argument:

$$
\propto \alpha_{\mathrm{s}}^{2} \int d^{2} q_{\perp} \frac{s}{\left(q_{\perp}^{2}+m^{2}\right)^{2}} \sim \alpha_{\mathrm{s}} \quad \begin{aligned}
& s \sim T \\
& m \sim g T
\end{aligned}
$$

- There is then an α_{EM} probability of radiating a photon

- The collinear enhancement brings these bremsstrahlung and pair annihilation diagrams to LO Aurenche Gelis Kobes Petitgirard Zaraket 1998-2000

The collinear region: LPM effect

- Photon is collinear, $\theta \sim g \quad p_{\perp} \sim g T$ spatial transverse size large $\Delta x_{\perp} \sim p_{\perp}^{-1}$ long separation (formation) time $t \sim \Delta_{\Delta} x_{\perp} / \theta \sim 1 /\left(g^{2} T\right)$
- The interference with other scattering events cannot be neglected (scattering rate $\sim g^{2} T$)
- This multiple scattering interference gives a suppression called the Landau-Pomeranchuk-Migdal (LPM) effect

The
 effect

- Introduced by Landau and Pomeranchuk (then Migdal) for QED in the 50's
- Extended to photons in QCD in Baier Dokshitzer Mueller Peigne Schiff NPB478 (1996)
- Rigorous treatment and diagrammatics in AMY (Arnold Moore Yaffe) JHEP 0111, 0112, 0226 (2001-02)
- In the JJ correlator diagrams like
have to be resummed consistently

AMY resummation

- Define a dressed vertex determined by an integral equation

- The emission rate in the collinear region becomes

$$
\begin{aligned}
\left.\frac{d \Gamma_{\gamma}}{d^{3} k}\right|_{\text {coll }}= & \frac{\mathcal{A}(k)}{(2 \pi)^{3}} \int_{-\infty}^{\infty} d p^{+}\left[\frac{\left(p^{+}\right)^{2}+\left(p^{+}+k\right)^{2}}{\left(p^{+}\right)^{2}\left(p^{+}+k\right)^{2}}\right] \frac{n_{F}\left(k+p^{+}\right)\left[1-n_{F}\left(p^{+}\right)\right]}{n_{F}(k)} \\
& \times \frac{1}{g^{2} C_{R} T^{2}} \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \operatorname{Re} 2 \mathbf{p}_{\perp} \cdot \mathbf{f}\left(\mathbf{p}_{\perp}, p^{+}, k\right),
\end{aligned}
$$

where $\mathcal{A}(k)=\alpha_{\mathrm{EM}} \frac{g^{2} C_{f} T^{2}}{2 k} n_{f}(k) \sum_{s} d_{f} q_{s}^{2}$
and \mathbf{f} is implicitly defined by

$$
2 \mathbf{p}_{\perp}=i \delta E \mathbf{f}\left(\mathbf{p}_{\perp} ; p, k\right)+\int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \mathcal{C}\left(q_{\perp}\right)\left[f\left(\mathbf{p}_{\perp}\right)-\mathbf{f}\left(\mathbf{p}_{\perp}+\mathbf{q}_{\perp}\right)\right]
$$

AMY resummation

$$
2 \mathbf{p}_{\perp}=i \delta E \mathbf{f}\left(\mathbf{p}_{\perp} ; p, k\right)+\int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \mathcal{C}\left(q_{\perp}\right)\left[\mathbf{f}\left(\mathbf{p}_{\perp}\right)-\mathbf{f}\left(\mathbf{p}_{\perp}+\mathbf{q}_{\perp}\right)\right]
$$

- Two inputs
- Difference in energy after and before radiation

$$
\delta E=k^{0}+E_{\mathbf{p}}-E_{\mathbf{p}+\mathbf{k}} \simeq \frac{k}{p(k+p)} \frac{\mathbf{p}_{\perp}^{2}+m_{\infty}^{2}}{2}
$$

- Rate of soft collisions through the collision kernel

$$
\mathcal{C}\left(q_{\perp}\right)=\frac{d \Gamma}{d q_{\perp}^{2}} \sim g^{2} T \frac{m_{D}^{2}}{q_{\perp}^{2}\left(q_{\perp}^{2}+m_{D}^{2}\right)}
$$

relevance for jet quenching

$$
\hat{q} \equiv \int_{0}^{q_{\max }} \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} q_{\perp}^{2} C\left(q_{\perp}\right)
$$

Full LO results

- Numerically solving the implicit equation for the collinear region yields the full LO results for the thermal photon production rate

$$
\begin{gathered}
\left.(2 \pi)^{3} \frac{d \Gamma}{d^{3} k}\right|_{\mathrm{LO}}=\mathcal{A}(k)\left[\log \frac{T}{m_{\infty}}+C_{2 \rightarrow 2}(k)+C_{\mathrm{coll}}(k)\right] \\
\mathcal{A}(k)=\alpha_{\mathrm{EM}} \frac{g^{2} C_{f} T^{2}}{2 k} n_{f}(k) \sum_{s} d_{f} q_{s}^{2}
\end{gathered}
$$

Full LO results

Numerically solving the implicit equation for the collinear region yields the full LO results for the thermal photon production rate

Arnold Moore Yaffe JHEP0112 (2001)

Going to NLO

- As usual in thermal field theory, the soft scale $g T$ introduces NLO $O(g)$ corrections
- The soft region and the collinear region both receive $O(g)$ corrections
- There is a new semi-collinear region
- The NLO calculation is still not sensitive to the magnetic scale $g^{2} T$. Ideas for NNLO?

Fuclideanization of light-cone soft

physics

For $v=x_{z} / t=\infty$ correlators (such as propagators) are the equal time Euclidean correlators.

$$
G_{r r}(t=0, \mathbf{x})=\mathcal{\&}_{n} G_{E}\left(\omega_{n}, p\right) e^{i \mathbf{p} \cdot \mathbf{x}}
$$

- Boost invariance: true for $\stackrel{p}{v>}$. For soft fields the $v \rightarrow 1^{+}$ limit is smooth (feeling the medium in uncorrelated, eikonalized way)

$$
G_{r r}\left(t=x_{z}, \mathbf{x}_{\perp}\right)=\not_{p} G_{E}\left(\omega_{n}, p_{\perp}, p_{z}+i \omega_{n}\right) e^{i\left(\mathbf{p}_{\perp} \cdot \mathbf{x}_{\perp}+p_{z} x_{z}\right)}
$$

- The sums are dominated by the zero mode for soft physics $=>$ EQCD!
- Equivalent to sum rules

Caron-Huot PRD79 (2009)

Soft sensitivity and subtractions

- Consider the asymptotic mass for a fermion (a not-sorandomly chosen example). The dispersion relation approaches $p_{0}^{2}=p^{2}+m_{\infty}^{2}$ for $p^{0} \approx p \gg g T$
- At leading order $m_{\infty}^{2}=2 g^{2} C_{R}\left(\int \frac{d^{3} p n^{2}(p)}{(2 \pi)^{3}} \frac{n^{\frac{1}{p}}}{p}+\int \frac{d^{3} p}{(2 \pi)^{\frac{3}{2}}} \frac{n_{F}(p)}{p}\right)$

Soft sensitivity and subtractions

- Consider the asymptotic mass for a fermion (a not-sorandomly chosen example). The dispersion relation approaches $p_{0}^{2}=p^{2}+m_{\infty}^{2}$ for $p^{0} \approx p \gg g T$
- At leading order $m_{\infty}^{2}=2 g^{2} C_{R}\left(\int \frac{d^{3} p n^{2}(p)}{\left.(2 \pi)^{\frac{3}{B}} \frac{p}{p}+\int \frac{d^{3} p}{(2 \pi)^{\frac{3}{2}}} \frac{n_{F}(p)}{p}\right)}\right.$

NLO asymptotic mass

- The soft contribution is large and handled incorrectly. This part of the integrand needs to be subtracted and replaced by a proper evaluation with HTL
- NLO correction computed in Caron-Huot PRD79 (2009) with Euclidean techniques

$$
\delta m_{\infty}^{2}=2 g^{2} C_{R} T \int \frac{d^{3} q}{(2 \pi)^{3}}\left(\frac{1}{q^{2}+m_{D}^{2}}-\frac{1}{q^{2}}\right)=-g^{2} C_{R} \frac{T m_{D}}{2 \pi}
$$

Light-cone condensates

- Asymptotic mass Caron-Huot PRD79 (2009)

$$
\begin{aligned}
m_{\infty}^{2} & =g^{2} C_{R}\left(Z_{g}+Z_{f}\right) \\
Z_{g} & \equiv \frac{1}{d_{A}}\left\langle v_{\mu} F^{\mu \rho} \frac{-1}{(v \cdot D)^{2}} v_{\nu} F_{\rho}^{\nu}\right\rangle \quad v_{k}=(1,0,0,1) \\
& =\frac{-1}{d_{A}} \int_{0}^{\infty} d x^{+} x^{+}\left\langle v_{k \mu} F_{a}^{\mu \nu}\left(x^{+}, 0,0_{\perp}\right) U_{A}^{a b}\left(x^{+}, 0,0_{\perp} ; 0,0,0_{\perp}\right) v_{k \rho} F_{b \nu}^{\rho}(0)\right\rangle \\
Z_{f} & \equiv \frac{1}{2 d_{R}}\left\langle\bar{\psi} \frac{\not p}{v \cdot D} \psi\right\rangle
\end{aligned}
$$

The collinear sector

- The AMY resummation equation is

$$
\begin{aligned}
\left.\frac{d \Gamma_{\gamma}}{d^{3} k}\right|_{\text {coll }}= & \frac{\mathcal{A}(k)}{(2 \pi)^{3}} \int_{-\infty}^{\infty} d p^{+}\left[\frac{\left(p^{+}\right)^{2}+\left(p^{+}+k\right)^{2}}{\left(p^{+}\right)^{2}\left(p^{+}+k\right)^{2}}\right] \frac{n_{F}\left(k+p^{+}\right)\left[1-n_{F}\left(p^{+}\right)\right]}{n_{F}(k)} \\
& \times \frac{1}{g^{2} C_{R} T^{2}} \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \operatorname{Re} 2 \mathbf{p}_{\perp} \cdot \mathbf{f}\left(\mathbf{p}_{\perp}, p^{+}, k\right),
\end{aligned}
$$

- Four sources of $O(g)$ corrections
- $p^{+} \sim g T$ or $p^{+}+k \sim g T$. Mistreated soft limit
- $p_{\perp} \sim \sqrt{g} T, p^{-} \sim g T$. Mistreated semi-collinear limit
- The two inputs in the integral equation, m_{∞}^{2} and $\mathcal{C}\left(q_{\perp}\right)$ receive $O(g)$ corrections. The former we know about.

The NLO collision kernel

- At the LO only (a) has been used as a rung in the AMY ladder resummation. At the NLO all these diagrams have to be evaluated at the soft scale (remember that the quark lines are on the light cone)
- This calculation has been carried out in Caron-Huot PRD79 (2009) using Euclidean technology

Subtraction regions

$$
\begin{aligned}
\left.\frac{d \Gamma_{\gamma}}{d^{3} k}\right|_{\text {coll }}= & \frac{\mathcal{A}(k)}{(2 \pi)^{3}} \int_{-\infty}^{\infty} d p^{+}\left[\frac{\left(p^{+}\right)^{2}+\left(p^{+}+k\right)^{2}}{\left(p^{+}\right)^{2}\left(p^{+}+k\right)^{2}}\right] \frac{n_{F}\left(k+p^{+}\right)\left[1-n_{F}\left(p^{+}\right)\right]}{n_{F}(k)} \\
& \times \frac{1}{g^{2} C_{R} T^{2}} \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \operatorname{Re} 2 \mathbf{p}_{\perp} \cdot \mathbf{f}\left(\mathbf{p}_{\perp}, p^{+}, k\right), \\
2 \mathbf{p}_{\perp}= & i \delta E \mathbf{f}\left(\mathbf{p}_{\perp} ; p, k\right)+\int \frac{d^{2} \mathbf{q}_{\perp}}{(2 \pi)^{2}} \mathcal{C}\left(q_{\perp}\right)\left[\mathbf{f}\left(\mathbf{p}_{\perp}\right)-\mathbf{f}\left(\mathbf{p}_{\perp}+\mathbf{q}_{\perp}\right)\right]
\end{aligned}
$$

- For small $p \quad \delta E=\frac{k}{p(k+p)} \frac{p_{\perp}^{2}+m_{\infty}^{2}}{2} \rightarrow \frac{p_{\perp}^{2}+m_{\infty}^{2}}{2 p} \sim g T$
- This then implies

$$
\delta E \sim \frac{T}{p} \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} \mathcal{C}\left(q_{\perp}\right)^{\mathrm{LO}} \quad C\left(q_{\perp}\right)^{(\mathrm{LO})}=\frac{g^{2} T C_{s} m_{D}^{2}}{q_{\perp}^{2}\left(q_{\perp}^{2}+m_{D}^{2}\right)}
$$

- The AMY equation can be solved analytically by substitution (single-scattering regime), yielding

$$
\left.\frac{d \Gamma_{\gamma}}{d^{3} k}\right|_{\text {soft }} ^{\text {subtr. }}=\frac{\mathcal{A}(k)}{(2 \pi)^{3}} \int_{-\mu^{+}}^{+\mu^{+}} d p^{+} \frac{8}{T} \int \frac{d^{2} p_{\perp} d^{2} q_{\perp}}{(2 \pi)^{4}} \frac{m_{D}^{2}}{q_{\perp}^{2}\left(q_{\perp}^{2}+m_{D}^{2}\right)}\left(\frac{\mathbf{p}_{\perp}}{p_{\perp}^{2}+m_{\infty}^{2}}-\frac{\mathbf{p}_{\perp}+\mathbf{q}_{\perp}}{\left(\mathbf{p}_{\perp}+\mathbf{q}_{\perp}\right)^{2}+m_{\infty}^{2}}\right)^{2}
$$

- The contribution from the NLO asymptotic mass and scattering kernel is then to be solved for numerically.
- Going into impact parameter space is useful: integral equation \Rightarrow differential equation Aurenche Gelis Moore Zaraket JHEP0212 (2002)
- The results for the numerical solution of the collinear region can be written in this form

$$
\begin{aligned}
\left.(2 \pi)^{3} \frac{d \delta \Gamma}{d^{3} k}\right|_{\mathrm{NLO} \text { coll }}= & \mathcal{A}(k)\left[\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} C_{\text {coll }}^{\delta m}(k)+\frac{g^{2} C_{A} T}{m_{D}} C_{\text {coll }}^{\delta \mathcal{C}}(k)\right] \\
& \frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}}=-\frac{2 m_{D}}{\pi T}
\end{aligned}
$$

The soft sector

Fermionic sum rules

- We have found the fermionic analogue of the AGZ sum rule
- The leading-order soft contribution (P fully soft)

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k_{\mathrm{soft}}} \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

where

$$
\begin{aligned}
& S(P)=\frac{1}{2}\left[\left(\gamma^{0}-\vec{\gamma} \cdot \hat{p}\right) S^{+}(P)+\left(\gamma^{0}+\vec{\gamma} \cdot \hat{p}\right) S^{-}(P)\right] \\
& S_{R}^{ \pm}(P)=\left.\frac{i}{p^{0} \mp\left[p+\frac{\omega_{0}^{2}}{p}\left(1-\frac{p^{0} \mp p}{2 p} \ln \left(\frac{p^{0}+p}{p^{0}-p}\right)\right)\right]}\right|_{p^{0}=p^{0}+i \epsilon}
\end{aligned}
$$

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k} \text { soft } \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k} \text { soft } \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- A retarded propagator is an analytic function of Q in the upper half-plane not just in the frequency, but in any time-like or light-like variable

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k} \text { soft } \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- A retarded propagator is an analytic function of Q in the upper half-plane not just in the frequency, but in any time-like or light-like variable
- Deform the contour away from the real axis

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k} \text { soft } \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- A retarded propagator is an analytic function of Q in the upper half-plane not just in the frequency, but in any time-like or light-like variable
- Deform the contour away from the real axis

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k}{ }_{\text {soft }} \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- A retarded propagator is an analytic function of Q in the upper half-plane not just in the frequency, but in any time-like or light-like variable
- Deform the contour away from the real axis

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k_{\text {soft }}} \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- Along the arcs at large complex p^{+}the integrand has a very simple behavior

$$
\operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right]_{p^{-}=0}=\frac{i}{p^{+}} \frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}+\mathcal{O}\left(\frac{1}{\left(p^{+}\right)^{2}}\right)\right.
$$

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k_{\text {soft }}} \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- Along the arcs at large complex p^{+}the integrand has a very simple behavior

$$
\operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right]_{p^{-}=0}=\frac{i}{p^{+}} \frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}+\mathcal{O}\left(\frac{1}{\left(p^{+}\right)^{2}}\right)\right.
$$

- The integral then gives simply

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k}{ }_{\text {soft }} \propto \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}
$$

Fermionic sum rules

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k_{\text {soft }}} \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}} \operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right)\right]_{p^{-}=0}
$$

- Along the arcs at large complex p^{+}the integrand has a very simple behavior

$$
\operatorname{Tr}\left[\gamma^{-}\left(S_{R}(P)-S_{A}(P)\right]_{p^{-}=0}=\frac{i}{p^{+}} \frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}+\mathcal{O}\left(\frac{1}{\left(p^{+}\right)^{2}}\right)\right.
$$

- The integral then gives simply

$$
(2 \pi)^{3} \frac{d \Gamma_{\gamma}}{d^{3} k_{\mathrm{soft}}} \propto \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}
$$

- The p_{\perp} integral is UV-log divergent, giving the LO UVdivergence that cancels the IR divergence at the hard scale, now analytically
Independently obtained by Besak Bödeker JCAP1203 (2012)

The

- At NLO one can use the KMS relations and the $r a$ basis to write the diagrams in terms of fully retarded and fully advanced functions of P. The hard only depend on p^{-}.
- The contour deformations are then again possible and the diagrams can be expanded for large complex p^{+}. On general grounds we expect
$\left.(2 \pi)^{3} \frac{d \delta \Gamma_{\gamma}}{d^{3} k}\right|_{\text {soft }} \propto \int \frac{d p^{+} d^{2} p_{\perp}}{(2 \pi)^{3}}\left[C_{0}\left(\frac{1}{p^{+}}\right)^{0}+C_{1}\left(\frac{1}{p^{+}}\right)^{1}+\ldots\right]$

The soft region

- The $\left(1 / p^{+}\right)^{0}$ term has to be exactly the subtraction term we have seen before in the collinear region, to cancel the cutoff dependence. Confirmed by explicit calculation
- At order $1 / p^{+}$we had the LO result. We can expect

$$
\frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}} \rightarrow \frac{m_{\infty}^{2}+\delta m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}+\delta m_{\infty}^{2}}=\left(\frac{m_{\infty}^{2}}{p_{\perp}^{2}+m_{\infty}^{2}}+\frac{\delta m_{\infty}^{2} p_{\perp}^{2}}{\left(p_{\perp}^{2}+m_{\infty}^{2}\right)^{2}}+\mathcal{O}\left(g^{2}\right)\right)
$$

The explicit calculation finds just this contribution.

- The contribution from HTL vertices goes like $\left(1 / p^{+}\right)^{2}$ or smaller on the arcs.

The soft region

- Once the divergent part is subtracted the soft contribution is

$$
\left.(2 \pi)^{3} \frac{d \delta \Gamma_{\gamma}}{d^{3} k}\right|_{\mathrm{soft}}=\mathcal{A}(k) \frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \frac{p_{\perp}^{2}}{\left(p_{\perp}^{2}+m_{\infty}^{2}\right)^{2}}
$$

- UV log-divergence has to cancel with the semi-collinear region, where $p_{\perp} \sim \sqrt{g} T$

Light-cone condensates

- Asymptotic mass Caron-Huot PRD79 (2009)

$$
\begin{aligned}
m_{\infty}^{2} & =g^{2} C_{R}\left(Z_{g}+Z_{f}\right) \\
Z_{g} & \equiv \frac{1}{d_{A}}\left\langle v_{\mu} F^{\mu \rho} \frac{-1}{(v \cdot D)^{2}} v_{\nu} F_{\rho}^{\nu}\right\rangle \quad v_{k}=(1,0,0,1) \\
& =\frac{-1}{d_{A}} \int_{0}^{\infty} d x^{+} x^{+}\left\langle v_{k \mu} F_{a}^{\mu \nu}\left(x^{+}, 0,0_{\perp}\right) U_{A}^{a b}\left(x^{+}, 0,0_{\perp} ; 0,0,0_{\perp}\right) v_{k \rho} F_{b \nu}^{\rho}(0)\right\rangle \\
Z_{f} & \equiv \frac{1}{2 d_{R}}\left\langle\bar{\psi} \frac{\not p}{v \cdot D} \psi\right\rangle
\end{aligned}
$$

The semi-collinear region

P semi-collinear
Q soft

- Kinematical regions \Rightarrow different processes
- Q timelike $\Rightarrow 2 \leftrightarrow 2$ processes with massive (plasmon) gluon
- Q spacelike $\Rightarrow 2 \leftrightarrow 3$ processes: wider-angle bremsstrahlung and pair annihilation, no LPM interference

The semi-collinear region

- Subtraction term from the collinear region

$$
\begin{aligned}
\left.\frac{d \delta \Gamma_{\gamma}}{d^{3} k}\right|_{\text {semi-coll }} ^{\text {coll subtr. }}= & 2 \frac{\mathcal{A}(k)}{(2 \pi)^{3}} \int d p^{+}\left[\frac{\left(p^{+}\right)^{2}+\left(p^{+}+k\right)^{2}}{\left(p^{+}\right)^{2}\left(p^{+}+k\right)^{2}}\right] \frac{n_{F}\left(k+p^{+}\right)\left[1-n_{F}\left(p^{+}\right)\right]}{n_{F}(k)} \\
& \times \frac{1}{g^{2} C_{R} T^{2}} \int \frac{d^{2} p_{\perp}}{(2 \pi)^{2}} \frac{4\left(p^{+}\right)^{2}\left(p^{+}+k\right)^{2}}{k^{2} p_{\perp}^{4}} \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} q_{\perp}^{2} \mathcal{C}\left(q_{\perp}\right)
\end{aligned}
$$

- Proper evaluation: replace

$$
\frac{\hat{q}}{g^{2} C_{R}} \equiv \frac{1}{g^{2} C_{R}} \int \frac{d^{2} q_{\perp}}{(2 \pi)^{2}} q_{\perp}^{2} \mathcal{C}\left(q_{\perp}\right)=\int \frac{d^{4} Q}{(2 \pi)^{3}} \delta\left(q^{-}\right) q_{\perp}^{2} G_{r r}^{++}(Q)
$$

with
$\frac{\hat{q}(\delta E)}{g^{2} C_{R}} \equiv \int \frac{d^{4} Q}{(2 \pi)^{3}} \delta\left(q^{-}-\delta E\right)\left[q_{\perp}^{2} G_{r r}^{++}(Q)+G_{T}^{r r}(Q)\left(\left[1+\frac{q_{z}^{2}}{q^{2}}\right] \delta E^{2}-2 q_{z} \delta E\left[1-\frac{q_{z}^{2}}{q^{2}}\right]\right)\right]$
because $\delta E \sim g T$ is no longer negligible

- The latter object too can be evaluated in Euclidean spacetime

Light-cone condensates

- Asymptotic mass Caron-Huot PRD79 (2009)

$$
\begin{aligned}
m_{\infty}^{2} & =g^{2} C_{R}\left(Z_{g}+Z_{f}\right) \\
Z_{g} & \equiv \frac{1}{d_{A}}\left\langle v_{\mu} F^{\mu \rho} \frac{-1}{(v \cdot D)^{2}} v_{\nu} F_{\rho}^{\nu}\right\rangle \quad v_{k}=(1,0,0,1) \\
& =\frac{-1}{d_{A}} \int_{0}^{\infty} d x^{+} x^{+}\left\langle v_{k \mu} F_{a}^{\mu \nu}\left(x^{+}, 0,0_{\perp}\right) U_{A}^{a b}\left(x^{+}, 0,0_{\perp} ; 0,0,0_{\perp}\right) v_{k \rho} F_{b \nu}^{\rho}(0)\right\rangle \\
Z_{f} & \equiv \frac{1}{2 d_{R}}\left\langle\bar{\psi} \frac{\not p}{v \cdot D} \psi\right\rangle
\end{aligned}
$$

- $\delta E-$-dependent qhat
$\frac{\hat{q}(\delta E)}{g^{2} C_{R}} \equiv \int_{-\infty}^{\infty} d x^{+} e^{i x^{+} \delta E} \frac{1}{d_{A}}\left\langle v_{k}^{\mu} F_{\mu}{ }^{\nu}\left(x^{+}, 0,0_{\perp}\right) U_{A}\left(x^{+}, 0,0_{\perp} ; 0,0,0_{\perp}\right) v_{k}^{\rho} F_{\rho \nu}(0)\right\rangle$,
For $\mathrm{\delta} \mathrm{E} \rightarrow 0$ the definition by audience members is recovered

The semi-collinear region

P semi-collinear
Q soft

- Limits and divergences
$\uparrow p_{\perp} \rightarrow \infty(\delta E \rightarrow \infty)$ subtract the hard limit
$\downarrow \mathrm{p}_{\perp} \rightarrow 0$ subtract the collinear limit $\left(p_{\perp} \gg q_{\perp}\right)$
$\swarrow \mathrm{p}_{\perp} \rightarrow 0 \wedge p^{+} \rightarrow 0$ IR \log, combines with UV soft \log (NLO log)
- Aside from the IR-log, the general behaviour of the P integration can only be obtained numerically.

Kandinsky, Klee \& Kurkela

Results

Summary

- LO rate

$$
\begin{aligned}
\left.(2 \pi)^{3} \frac{d \Gamma}{d^{3} k}\right|_{\mathrm{LO}} & =\mathcal{A}(k) \overbrace{\left[\log \frac{T}{m_{\infty}}+C_{2 \rightarrow 2}(k)+C_{\mathrm{coll}}(k)\right]}^{C_{\mathrm{LO}}(k)} \\
\mathcal{A}(k) & =\alpha_{\mathrm{EM}} g^{2} C_{F} T^{2} \frac{n_{\mathrm{F}}(k)}{2 k} \sum_{f} Q_{f}^{2} d_{f}
\end{aligned}
$$

- NLO correction

$\left.(2 \pi)^{3} \frac{d \delta \Gamma}{d^{3} k}\right|_{\mathrm{NLO}}=\mathcal{A}(k) \overbrace{[\underbrace{\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} \log \frac{\sqrt{2 T m_{D}}}{m_{\infty}}+\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} C_{\mathrm{soft}+\mathrm{sc}}(k)}_{\delta C_{\mathrm{soft}+\mathrm{sc}}(k)}+\underbrace{\delta m_{\infty}^{2}}_{\delta C_{\mathrm{coll}}(k)} C_{\mathrm{coll}}^{\delta m}(k)+\frac{g^{2} C_{A} T}{m_{D}} C_{\mathrm{coll}}^{\delta \mathcal{C}}(k)}^{\delta C_{\mathrm{NLO}}(k)}]$

$$
\left.(2 \pi)^{3} \frac{d \delta \Gamma}{d^{3} k}\right|_{\mathrm{NLO}}=\mathcal{A}(k) \overbrace{[\underbrace{\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} \log \frac{\sqrt{2 T m_{D}}}{m_{\infty}}+\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} C_{\mathrm{soft}+\mathrm{sc}}(k)}_{\delta C_{\mathrm{soft}+\mathrm{sc}}(k)}+\underbrace{\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} C_{\mathrm{coll}}^{\delta m}(k)+\frac{g^{2} C_{A} T}{m_{D}} C_{\mathrm{coll}}^{\delta \mathcal{C}}(k)}_{\delta C_{\mathrm{coll}}(k)}]}
$$

$\delta C_{\mathrm{NLO}}(k)$

$$
\begin{aligned}
& \text { k/T }
\end{aligned}
$$

QCD and SYM

SYM/QCD, normalized by susceptibility. $\mathrm{N}_{\mathrm{C}}=3, \mathrm{~N}_{\mathrm{f}}=3, \alpha_{\mathrm{S}}=0.3$

- Strongly-coupled $\mathcal{N}=4$: Caron-Huot Kovtun Moore Starinets Yaffe JHEP0612 (2006)

Conclusions

$$
\left.(2 \pi)^{3} \frac{d \delta \Gamma}{d^{3} k}\right|_{\mathrm{NLO}}=\mathcal{A}(k) \overbrace{[\underbrace{\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} \log \frac{\sqrt{2 T m_{D}}}{m_{\infty}}+\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} C_{\mathrm{soft}+\mathrm{sc}}(k)}_{\delta C_{\mathrm{soft}+\mathrm{sc}}(k)}+\underbrace{\frac{\delta m_{\infty}^{2}}{m_{\infty}^{2}} C_{\mathrm{coll}}^{\delta m_{\infty}}(k)+\frac{g^{2} C_{A} T}{m_{D}} C_{\mathrm{coll}}^{\delta \mathcal{C}}(k)}_{\delta C_{\mathrm{coll}(}(k)}]}^{\delta C_{\mathrm{NLO}}(k)}
$$

- The NLO contribution is made of four terms, with a semicollinear / soft $\log \left(\sim g^{1 / 2}\right)$
- These four terms combine in two large and opposite contributions that largely cancel giving a relatively small NLO correction. Is the cancellation accidental? At $\alpha_{\mathrm{s}}=0.3$ the NLO is initially positive, then turns negative and keeps growing at large k / T. At small $\alpha_{\mathrm{s}}\left(\alpha_{\mathrm{s}}=0.05\right)$ the correction is always negative
- In the phenomenologically interesting window up to the NLO correction is $10 \%-20 \%$ for $\alpha \mathrm{s}=0.3$

Conclusions

- Contrary to the heavy-quark diffusion case, here we probe soft fields at light-like separations. After a few headaches, it turns out this is computationally easier and better convergent
- Light-cone sum rules are a powerful instrument. Is there a Euclidean picture for fermions too?
- Finding out that there is a bridge is as important as being able to go to the other side. Other applications for it? Tackling new NLO calculations?

